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Abstract

The purpose of this research is to conduct fundamental investigations of tur-
bulent mixing, chemical reaction and combustion processes in turbulent, subsonic
and supersonic flows. The program during this reporting period was comprised of
several parts:

a. an experimental effort,
b. a numerical simulation effort,
and

c. an effort to develop instrumentation and diagnostics; low and combustion
facilities; and data-acquisition systems.

The latter as dictated by the specific needs of the experimental part of the program.

Our approach in this research has been to carry out a series of detailed theoret-
ical and experimental studies of turbulent mixing in primarily in two, well-defined,
fundamentally important flow fields: free-shear layers and axisymmetric jets. To
elucidate molecular transport effects, experiments and theory concern themselves
with both reacting and non-reacting flows of liquids and gases, in fully-developed
turbulent flows, i.e., in moderate to high Reynolds number flows. A criterion for
fully-developed turbulence was recently developed and will be presented below.

The computational studies are, at present, focused at fundamental formula-
tion and implementation issues pertaining to the computational simulation of both
compressible and incompressible flows characterized by strong fronts, such as shock
waves and flames.

Our diagnostic development efforts have recently been focused on improving
the signal-to-noise ratio of flow images, in both gas- and liquid-phase flows, as well
as the continuing development of data-acquisition electronics to meet very high-
speed, high-volume data requirements; the acquisition of single, or pairs, of two-
dimensional images in rapid succession; and the acquisition of data from arrays of
supersonic flow sensors.




1. Introduction

Progress made under the sponsorship of this Grant, for the period ending 31
May 1993, has taken place in several focus areas. This is discussed in the cor-
responding sections below. Additional documentation can be found in the recent
reports and publications included as appendices to this report, as well as in the
reference list (Sec.8). Additional copies of any of this material are available on

request.

Work in preliminary stages, at this writing, and not documented in the discus-

sion below, includes:

a. progress and advances in signal-to-noise ratio in gas-phase, supersonic-flow

ima.ging;)‘

b. calculations and design for an upgrade of the Supersonic Shear Layer (S3L)
combustion facility scheduled during the next twelve months;

c. an analytical effort to understand mixed (super-/sub-sonic) flow;

and

d. advances in computer-aided-design and fabrication of electronic circuitry.

Parts of this effort were cosponsored by an ARPA/ONR contract, the Gas

Research Institute, and JPL.
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t Related work in liquid-phase jets is discussed in Sec.4.2.
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2. A criterion for fully-developed turbulence

Recent data on turbulent mixing suggest that the mixing transition, previously
documented to occur in shear layers, also occurs in the far field (z/d > 30) of
turbulent jets jets, as well as other flows. Specifically, a transition to a more well-
mixed state has been observed experimentally in,

a. pipe flow,

b. in the near-field (z/d < 15) of round jets,

c. in cylinder wakes,

d. in grid turbulence,

e. in thermal convection,

f. in Couette-Taylor flow (between concentric cylinders),

as well as

g. in recent numerical simulations of turbulence in a spatially periodic cube.

The resulting, fully-developed turbulent flow requires a minimum Reynolds number
of Re =~ 10, or a minimum Taylor Reynolds number of Ret = 102, to be sustained.
The transition itself must be regarded as a more-or-less universal phenomenon.

Turbulent mixing in this fully-developed state does not appear to be universal,
however, with a qualitatively different behavior between shear layers and jets. See
also discussion in Miller & Dimotakis (1992).'t These observations were presented
at the Turbulence Symposium in honor of W. C. Reynolds’s 60** birthday, 22-23
March 1993 (Monterey, CA).

A GALCIT report documenting this discussion is included as part of this report
as Appendix B.

t Included ir. this report as Appendix A.




3. Mixing and combustion in supersonic, turbulent shear layers

Several “flip” (Koochesfahani & Dimotakis 1986), chemically-reacting, super-
sonic shear-layer flow experiments have been performed in the last year. These are
part of an attempt to separate Reynolds number effects from compressibility (Mach
number) effects. In our previous compressible work (Hall et al. 1991), Reynolds
number effects were acknowledged, but could not be specifically addressed.

The recent results indicate that Reynolds number effects are the probable pri-
mary cause of lower mixing (rate), at moderate compiessibility, relative to that
documented on the basis of previous data in incompressible reacting shear layers,
at lower Reynolds numbers, as opposed to compressibility. This is an important
issue, not only theoretically but also from an applications point of view.}

Previously available, chemically-reacting flow data fall in the Reynolds number
range of 10 to 10°. The minimum Reynolds number for the compressible cases
is around 10°. Important constraints, requiring that chemical reactions proceed at
atmospheric pressure to ensure that they are in the fast-kinetic regime, preclude
compressible runs to be performed at Reynolds numbers similar to those of the
incompressible data. It is possible to extrapolate the incompressible data to these
higher Reynolds numbers, but the uncertainty of these estimates is quite high.

In Hall et al. (1991), the primary compressibility effect observed was between
the medium and high compressibility cases. Those experiments, however, could not
distinguish between Reynolds number and Mach number effects and, as a conse-
quence, it was not possible to make definitive statements regarding compressibility
effects, at medium compressibility.

Figure 1 depicts the normalized product thicknesses at low stoichiometric ra-
tios, ¢, for the compressible flow cases of Hall et al. (1991) as well as the incom-
pressible flow cases of Mungal & Dimotakis (1984), Mungal et al. (1985), and Frieler
(1992).! The gap in Reynolds number, between the compressible and incompress-
ible flow data is clear. The recent flip experiment pairs were designed to reduce the
uncertainty in the Reynolds number effects at moderate compressibility (M. = 0.6).

The flip experiment pairs were made with Hy/NO and F; reactants in the

! D. Bushnell (private communication).

! See also Dimotakis (1993), included here as Appendix B, for additional discussion.
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F1G.1 Normalized product thickness for low ¢. Squares and circles: Mungal & Di-
motakis (1984); vertical bar: Mungal et al. (1985); triangles: Frieler (1992);
arrow and diamond: Hall et al. (1991).

high- and low-speed streams, respectively, with mixtures of He and Ar as diluents.
Separate chemical kinetic numerical simulations and experimental investigations
were conducted to ascertain that the data were acquired in the kinetically-fast
regime. Four conditions were arranged in two pairs. In each pair, the compressibility
(Mach number), density, velocity and specific heat ratios were kept fixed. Within
each pair, the two Reynolds numbers were separated by a factor of about 2.5, i.e.,
nearly a half decade in Reynolds number. These experiments were designed such
that Reynolds number would be the only cause of changes in the chemical product
and mixed fluid thicknesses.

Our preliminary recent results can be compared with each other, as well as
with the existing body of data, both compressible and incompressible. In this com-
parison, the other differences in the data must be noted. Most of the incompressible
flow pair data were recorded at stoichiometric mixture ratios of ¢ = 8,1/8. The
flows at medium compressibility were run with ¢ = 4,1/4. The best assessment
of the difference can be made in terms of the two incompressible flow points from
Mungal & Dimotakis. These are runs at identical conditions except that ¢ = 8,1/8




for the squares, and ¢ = 4,1/4 for the circles.

Another issue to consider is that different data-processing used on the different
sets of data might result in differences between sets of data. To this end, the raw
temperature measurements from Hall et al. and Frieler were reprocessed using the
same procedures. Comparisons of these three sets of points will have no systematic
error.

The normalized product thicknesses for low ¢’s is shown in Fig. 2. No evidence
of a Reynolds number dependence is discernible within the Reynolds number span of
the new (caret and star) data. This suggests that any differences between compress-
ible flows at these Reynolds numbers is not due to a change in Reynolds number.
There is little difference between the product thicknesses extrapolated on the basis
of the incompressible flow experiments and the medium compressibility cases. This
implies that the reduction of product thickness for the compressible cases, relative
to the previous, incompressible flow, experiments, is due to differences in Reynolds
number and not to compressibility.
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F1G.2 Normalized product thickness for low ¢. Square and circle: Mungal & Di-
motakis (1984); vertical bars: Mungal et al. (1985); triangles: Frieler (1992);
arrow and diamond: Hall et al. (1991); carets and stars: recent experiments.
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The normalized product thicknesses derived from flows at high ¢ are shown
in Fig.3. No Reynolds number effect is discernible in the four new data points.
Differences between the compressible experiments are probably not attributable
to the difference in Reynolds numbers. The product thicknesses from the highest
Reynolds number incompressible flow data are comparable to the medium com-
pressibility cases. Again, the implication is that the effect of compressibility on
molecular mixing is slight, if any, at medium compressibility.
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F1G.3 Normalized product thickness for high ¢. Square and circle: Mungal &
Dimotakis (1984); triangles: Frieler (1992); arrow and diamond: Hall et al.
(1991); carets and stars: recent experiments.

The normalized mixed fluid fraction data, derived form the high- and low-¢
“flip” flow pairs are shown in Fig.4. The four new points provide no clear evidence
of a Reynolds number dependence for the clustered, compressible flow data. In
comparisons with the incompressible data, it is important to note the two points
from Mungal & Dimotakis. As was noted for the product thickness results, it seems
that there is no real reduction in mixing due to compressibility.

Our recent preliminary data indicate that no strong dependence on Reynolds
number exists between the new, low and high Reynolds number, compressible flow
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F1G.4 Normalized mixed fluid thickness. Squares and circles: Mungal & Dimotakis
(1984); triangles: Frieler (1992); arrow and diamond: Hall et al. (1991);
carets and stars: recent experiments.

cases. This indicates that differences between compressible flows, as with the two
cases of Hall et al., would not be due to Reynolds number. Extrapolation of the
incompressible results produces a reasonable estimate of the mixed fluid thickness
values of the new data. This implies that the documented reduction in the mixed
fluid fraction, at moderate compressibility, is due to the higher Reynolds numbers
and not the higher Mach number in the latter flows.

We appreciate that this conclusic.. must be regarded as preliminary, in view
of the data-less decade, or so, in Reynolds number across which the extrapolation
has been made. We hope to be in a position to address this deficiency in our future
work.

This work is part of the Ph.D. research effort of Chris Bond.




4. Mixing and combustion in turbulent jets

The research effort on turbulent jet mixing, involving both the gas-phase, chem-
ically reacting and liquid-phase, non-reacting jet investigations, has been cospon-
sored by the Gas Research Institute, GRI Contract No. 5087-260-1467.

4.1 Gas-phase chemically-reacting jets

Previous experiments conducted in the High Pressure Reacting Vessel (HPRV)
have yielded significant information on the heat release distribution in a chemically-
reacting, axisymmetric jet. Those experiments documented the flame length de-
pendence on Reynolds number, in the range 1.0 x 10* < Re < 15 x 104, as well as
the existence of a Reynolds-number-dependent mixing virtual origin. In addition,
Damkholer number effects on mixing and the heat release distribution were inves-
tigated. See Gilbrech (1991) Dimotakis et al. (1992), and Dimotakis (1993),* for a
mor= complete discussion.

In order to characterize flame length behavior, these investigations were con-
ducted on a jet in a purely momentum-dominated regime. Below are presented
the preliminary results of an investigation conducted on turbulent non-premixed
reacting jets mn a flow regime that cannot be regarded as in the purely momentum-
dominated regime. New and unsuspected results were found in both regions.

Specifically, in the region before the flame tip, there is experimental proof that
the heat release occurring in the reacting zone of the flow enhances not only the
entrainment, as had been know for some time, but also the mixing. In the post-
flame region, the line-integrated temperature field is characterized by a smooth
dependence on the adiabatic flame temperature rise, for a range of adiabatic flame
temperatures.

This part of the effort was principally undertaken by Dr. Dominique Fourguette.

* Included in this report as Appendix B.
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4.1.1 Heat release effects in the flame region

A detailed description of the experimental facility and the diagnostics can be
found in the Gilbrech (1991) Ph.D. thesis, as well as in Gilbrech & Dimotakis (1992).
A virtually unconfined, chemically-reacting axisymmetric jet (2.5 mm nozzle diam-
eter) of Fy, diluted in N, is discharged into a vessel containing NO, also diluted
in N2. The adiabatic flame temperature rise, AT, and the stoichiometric mixture
ratio, ¢, are set by the relative concentration of the reactants. The nozzle-exit
Reynolds number can range over more than an order of magnitude by changing
the HPRV ambient pressure, thus not modifying other flow conditions. The ex-
perimental results are in the form of time-averaged, line-integrated temperature
measurements both in the flame region and in the post-flame region.

Sp/Lso
N

* AT

101 K

o 1 i 1 L |
-.6 -.4 -.2 .0 .2 .4 .6
loo1o(x/l.f°)

Fi1G.5 Normalized product thickness for a purely and non-purely momentum-driven
flame, ¢ = 14 and Re = 1.0 x 10%.
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Figure 5 shows the line-integrated temperature measurement performed in the
purely momentum-dominated regime and in the case where heat release signifi-
cantly affects the temperature distribution. Both axes are normalized by the flame
length measured in the momentum-dominated regime. In the purely momentum-
dominated case (very low heat release), ATy = 13.7K, the heat release distribution
is a logarithmic function of the axial distance up to the flame tip and is indepen-
dent of the axial distance in the post-flame region (Gilbrech 1991). The logarithmic
dependence is discussed in Dimotakis (1993), which is appended to this report (Ap-
pendix B).

-4 T T T T T
.3
°
Jd .2
o
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O ATf = 46 K
.1 —
A AT¢ = 144 K
+ AT, = 176 K
o 1 1 i 1 1
-.6 -.4 -.2 .0 .2 .4
logo(x/L¢g)

FI1G.6 Adiabatic flame temperature scan, ¢ = 14 and Re = 1.0 x 10%.

At higher adiabatic flame temperatures (c¢f. Fig.5 data at ATy = 101K), the
line-integrated measurements reveal a larger heat release in the flame region, as
well as a significant excess temperature overshoot in the region of the flame tip.
Higher entrainment (of cold reservoir fluid) alone would result in the same, or lower,
temperatures in the flame region, and therefore cannot account for the larger heat
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release. The higher line-integrals of the temperature rise observed represent a new
result and indicate an enhanced mixing rate.

4.1.2 Post-flame region temperature field

The series of runs shown in Fig.6 reveal the existence of a point z. in the
post-flame region where the line-integrated temperature is independent of AT;. For
the case ¢ = 14, this is located at z./L¢ = 1.96. In other words, at a distance
downstream nearly twice the (reference) flame length, Ly, i.c., the flame-length
measured in the (purely) momentum-dominated case. The relation, z./Lg =~ 2
holds for all ¢’s measured, as can be seen in the following table. These data also
suggest that the Reynolds number dependence of the normalized cross-over point,
z./ Ly, is carried by Ly.

Tc
3 Re /I
10 2.0 x 10* 2.03
10 4.0 x 10* 1.94
12 1.0 x 10* 1.96
14 1.0 x 10* 1.96
17.9 2.0 x 104 2.11

The consistency in the normalized cross-over point, z./Lg, provides further
credence to the method utilized to estimate flame length and that this estimate can
provide a useful scaling length. Additional investigations are underway to probe
further into the mixing and entrainment mechanisms.
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4.2 Liquid-phase turbulent jet mixing

In our investigation of turbulent mixing and scalar interface geometry in liquid-
phase jets, we have obtained two-dimensional image data, in a plane perpendicular
to the jet axis, using laser-induced fluorescence techniques. High-resolution (1,024 x
1,024), high signal-to-noise ratio (~ 250 : 1) digital images over the full transverse
extent, in the far field of the jet interior, have been recorded with a low-noise,
cryogenically cooled, CCD camera. In work to date, such data have been acquired
in the Reynolds number range 3.8 x 10> < Re < 18 x 103. For these data, the
imaging station is at /d = 300. Each of the 10° pixels in the CCD-recording array
is calibrated and normalized using ensemble averages of several background and
illumination images. This allows the instantaneous, local jet-fluid concentration
field, ¢(y, z,t), to be measured at the fixed z-station imaged on the array.

Our preliminary data confirm that this range of Reynolds numbers spans a
mixing transition in the far field of turbulent jets, as also documented elsewhere in
this report (cf. Sec. 2 and Appendix B of this report). In work in progress, we are
attempting to quantify this pre- and post-transition turbulent mixing state using a
variety of measures.

5. Analytical and computational effort

Our work on the use of Lagrangian methods to compute unsteady, 1-D gasdy-
namic flows, with and without chemical reactions, was recently published (Lappas
et al. 1993). A reprint is included as part of this report in Appendix C.

0

1 2 3 4

F1G.7 Regular shock reflection. Pressure contour levels at time t = 5 (30 contour
levels for 0.5 < p < 3.5). Resolution: 60 x 20 cells.
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In more recent work, a new approach for computing multidimensional flows
has been developed as part of our on-going analytical and computational effort.
The method of characteristics, which has been successful for hyperbolic systems
in two independent variables, has been extended to the general case of several
independent variables for the particular case of gas dyha.mics. This new approach
was used to develop a numerical scheme capable of computing multidimensional
flows without the arbitrary dimensional splitting that conventional methods employ.
See discussion in Colella (1990), for example. A brief description of the new method
was documented in a recent report (Dimotakis et al. 1992).

——

S
2
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Fi1G.8a Double Mach reflection. Density contour levels at ¢ = 0.20 (30 contour
levels for 1.7 < p < 18.5). Resolution: 120 x 30 cells.

o N N O @ O

1.0 1.5 2.0 2.5 3.0

FIG.8b Double Mach reflection. Density contour levels at t = 0.20 (30 contour
levels in the range 1.73 < u < 21.0). Resolution: 240 x 60 cells.

Part of our current effort has focused on testing this particular method and
comparing it with other conventional schemes. We have developed our own version
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of the Godunov scheme known as MUSCL, which is used for comparison purposes,
and we have also compared our results with those of other simulations documented
in the literature. In particular, test cases, such as those presented by Woodward
and Colella (1984), were computed with very good results. These cases include a
standard oblique shock reflection and a more interesting case of a Mach reflection.
See Figs. 7, and 8a,b. These results are discussed in Lappas (1993).

1.0

1.0 1.5 2.0 2.5 3.0

F1G.9a Inviscid shear layer. Pressure contour levels at t = 5.0 (20 contour levels
for 0.98 < p < 1.52). Resolution: 200 x 100 cells.

In addition to validation runs, we are currently computing a variety of flows
aimed at understanding the physics of the interaction of shock waves with a shear
layer, or contact discontinuity. The computations are helping us understand the
often complicated wave patterns that arise in such flows. This effort is helped by
the adaptive gridding capability that we have developed. A hierarchy of overlapping
grids can be used to compute different parts of the flow with different resolution.
This is particularly important when computing regions of wave interaction where a
higher resolution may be needed. See Figs. 9a,b,c.
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u-velocity contour levels at t = 5.0 (20 contour levels

FiG.9b Inviscid shear layer.
on: 200 x 100 cells.

for 1.38 < u < 1.85). Resoluti
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6. Diagnostics, Instrumentation, & Experimental Techniques

Some of the work performed as part of this part of the effort is outlined below.
The development of the image correlation velocimetry and dual-image CCD tech-
nology, in collaboration with JPL, has been cosponsored by ARPA/ONR Contract
N00014-91-J-1968.

6.1 Image correlation velocimetry

Our effort in Image Correlation Velcomitry continues to refine the method,
introduced in last year’s report, for correlating two successive scalar images for the
purpose of measuring imaged fluid velocity field information. Specifically, a method
has been developed for deforming, or transforming, one image to another. Taylor-
series expansions of the Lagrangian displacement field are used, in conjunction with
an integral form of the equations of motion, to approximate this transformation.
The method locally correlates images for displacements, rotations, deformations,
and higher order displacement gradient fields. An integral form of the equations of
motion is employed and, as a consequence, no spatial or temporal differentiation of
the image data is required in estimating the displacement field. This improves our
ability to handle data with finite signal-to-noise ratios. A significant addition to our
method, over this past year, is the application of a global minimization procedure
to insure a global consistency in the results. Successive, two-dimensional digital
CCD images of fluid motion, marked with a passive scalar, are used to verify the
capabilities of the method. The utility of the method is also illustrated using a pair
of Voyager 2 images of Jupiter.

A detailed account of this effort to date can be found in Tokumaru & Dimotakis
(1992), which is included as part of this report as Appendix D.

6.2 High-speed data/image acquisition developments

This part of the effort was principally undertaken by D. B. Lang, in collabo-
ration with P. E. Dimotakis, as well as J. Janesick, T. Elliot, and S. A. Collins at
JPL.
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6.2.1 High-speed A/D system

We currently have two operational, high-speed A/D converter data acquisition
boards for high-speed and high-resolution digital image as well as scalar data acqui-
sition. The first board has two 12-bit 15MHz A/D converters and can digitize two
analog inputs at 15 MHz, or a single input at 30 MHz. The second board has two
12-bit 20 MHz A /D converters and can digitize two inputs at 20 MHz, or one input
at 40 MHz. The two bards can be used in parallel for an aggregate data throughput,
at this time, of 70 x 10¢ data samples/s.

Each board has 32 MB of local buffer memory and plugs into a standard VXI
backplane. A VMEbus computer running the OS-9 real-time operating system
controls the A /D units through a VME-to-VXI bus converter. We intend to upgrade
this to an embedded VXI computer. This will eliminate the need for the VME

backplane and will also permit the display of acquired images on the screen in real
time for focusing and calibration purposes.

Each A/D subsystem is comprised of an analog section and a digital section.
The A/D converter analog section has the following capabilities:

a. two 12-bit 20 MHz A/D converters digitize two channels at 20 Msamples/s
each, or one channel at 40 Msamples/s,
b. programmable gain of +0.4,+0.8, or £1.6 V full scale,
c. programmable offset of £0.5,+1.0, or £2.0V,
and,

d. Automatic calibration of A/D zero offset and full scale voltage.

The A/D converter digital section has the following capabilities:

a. 32MB of local buffer memory (70 MB/s/board throughput),

b. word-packing logic saves memory and reduces data rate (reduces 12-bit

data rate from 80 MB/s to 60 MB/s),
and,
c. flexible triggering and scanning options, i.e.

i. trigger via front panel connectors,

ii. trigger via CCD controller board,
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ili. trigger via direct computer control,

iv. 32-bit real-time counter allows event time-stamping,

v. up to 8 scan/frame/calibration patterns,

vi. framing words mark beginning/end of scan or frame,
vii. optional interrupt at beginning/end of scan or frame,
and,

viii. programmable delay line allows conversion timing adjustments.

These first-generation boards were designed and fabricated using computer-
controlled wire-wrapping technology to allow for small modifications, as dictated by
their first use. The design can now be frozen and we are in the process of redesigning
them, relying on multi-layer printed-circuit board technology to decrease unit costs.
Following this development, four additional channels will be fabricated.

6.2.2 CCD controller board

We have recently completed the design and fabrication of a very flexible, CCD,
focal plane array controller board that can control virtually any standard or custom
CCD image array, including the dual-image Mach-CCD, presently under develop-
ment in collaboration with James Janesick, Tom Elliot, and Andy Collins of JPL.
The board has two microsequencers that can respond to external trigger events
and generate the needed timing waveforms. The pixel microsequencer generates
the complex waveforms needed by the Mach-CCD, or any other multiphase clock
CCD, and also controls the A/D converter boards. The pixel microsequencer can
be programmed to digitize a subset of the image (region of interest) in order to
conserve memory and increase the framing rate. The event microsequencer is used
to generate the timing waveforms for YAG lasers, the camera shutter, and other
laboratory devices that must be synchronized to acquire Both microsequencers can
be triggered from an external control signal, or slaved to the other microsequencer.
By way of example, the real-time microsequencer can:

- wait for an external trigger signal (e.g., the start of a run),
- fire the first YAG laser,

- signal the pixel microsequencer to store the first image,




20

— fire the second YAG laser,
and finally

- signal the pixel microsequencer to start digitizing the two images.

The CCD controller board has the following features:

®

internal programmable clock of up to 40 MHz (25 ns timing resolution),
b. two external timing/pixel clock inputs/outputs,
c. three event trigger inputs (two coax and one fiber optic),
d. seven event trigger outputs (four coax and three fiber optic),
and,
e. one 37-pin connector for the camera head that provides:

i. the CCD clock input,
ii. 3 CCD trigger inputs,
and

iii. 14 CCD timing outputs.

The fiber optic input/outputs allow connecting to noisy devices such as the pulsed
YAG lasers.

6.2.3 CCD camera head

We have designed and are currently fabricating a general-purpose use CCD
camera head that can be used for the Mach-CCD. The first version uses a JPL
camera head board modified to enable acquiring of two images as closely as 1 us
apart. This first version has two analog outputs providing up to 0.5 Mpixels/s each
(limited by the JPL camera head board). This allows the readout of a pair of
1,024 x 1,024 images in two seconds.

A second generation camera head board is being designed to provide 4 analog
outputs allowing a ten-fold increase to 5 Mpixels/s each, for an aggregate rate of
20 Mpixels/s. The current Mach-CCD has two analog outputs so it will be possible
to acquire 10 pairs of 1,024 x 1,024 images per second.
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The latter is a very significant development, and will permit a much better
utilization of the experimental facilities used as part of this research effort. By
way of example, the cost of some high Mach number, chemically-reacting runs in
the supersonic shear layer facility can exceed $2,000, each. At present, we can
acquire only a single, high-quality image in such a run. The new gereration of
image-acquisition technology under development should permit higher signal-to-
noise ratios, along with a 20-fold increase in the image framing rate.
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Measurements of scalar power spectra in
high Schmidt number turbulent jets

Paul L. Miller and Paul E. Dimotakis
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Abstract

Single-point, jet-fluid concentration measurements obtained from high Schmidt
number (Sc =~ 1.9 x 10%) turbulent jets permit an investigation of temporal scalar
power spectra, for jet Reynolds numbers in the range of 1.25 < Re x 107* < 7.2.
At intermediate scales, we find a spectrum with a logarithmic derivative (slope)
that is increasing with Reynolds number, in absolute value, but less than 5/3 at the
highest Reynolds number in our experiments. At the smallest scales, our spectra
exhibit no k~! power-law behavior, possessing a log-normal region over a range of

scales exceeding a factor of 40, in some cases.

9 November 1992




1. Introduction

We report here on an experimental investigation of temporal scalar power spec-
tra of round, high Schmidt number, turbulent jets. It is part of a larger effort to
better understand mixing in turbulent free shear flows, including jets and shear lay-
ers. In these experiments, we examined the jet fluid concentration (scalar) power
spectra for several reasons. Spectra are sensitive diagnostics of the flow, providing
information over a wide range of scales. Historically, they have been the object of
a great deal of attention, partially because it is possible to extract predictions for

spectral slopes from various turbulence theories and models.

Key among these turbulence theories are the 1941 paper by Kolmogorov,!
with implications for the scalar field in the inertial range discussed by Corrsin,?
Oboukhov,? and, for higher wavenumbers, the theory by Batchelor.* See, for exam-
ple, discussions in Monin and Yaglom,® as well as in the recent review by Gibson.®
Both the Corrsin and the Oboukhov theories yield predictions of power-law spectra
and of the spectral power-law logarithmic derivative, or slope, as it will be subse-
quently referred to in this paper. Specifically, the Corrsin and Oboukhov theories
predict a scalar spectrum proportional to k~3/2 in the inertial range, as did the
1941 Kolmogorov theory for the energy spectrum.

For energy spectra, this has been observed experimentally under many condi-
tions (cf. compilation of data by Chapman?). The situation is less clear concerning
scalar spectra, with departures from the predicted behavior continuing to fuel de-
bate about details and refinements of the theory.

Batchelor? and Batchelor et al.® recognized that for Schmidt, or Prandt!, num-
bers away from unity there exists an additional, scalar-diffusion, scale, now com-
monly referred to as the Batchelor scale, which admits a change in the scalar spec-
tral behavior. The Batchelor theory* predicted that the scalar power spectrum at
high Schmidt numbers would display a k~! dependence beyond the Kolmogorov
wavenumber, i.e., a spectral slope of —1. Measurements in the laboratory (e.g.,
Gibson and Schwarz®) and the ocean (e.g., Grant et al.l°) were subsequently re-
ported to be in accord with this prediction.
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On the other hand, more recent measurements by Gargett!! in the ocean were
found not to exhibit a k~! spectral range (see, however, discussion by Gibson in
Refs. 12 and 6). The same result was noted in passive scalar mixing measurements in
shear layers!? and in scalar measurements in turbulent jt'ets.“'15 Specifically, despite
adequate resolution in those experiments, no k~! range was found at high spatial
wavenumbers, or, to be exact, temporal frequencies, adding to the questions about
the universality, if not the validity,’® of the classical predictions at high Schmidt

number.

The issue of spatial, vs. temporal, spectra should be recognized here. The
classical theories cited deal with spatial spectra. One could argue, therefore, that
comparisons of measurements of temporal spectra with predictions of spatial spectra
cannot be made directly. Two points, however, should be noted in response. First,
the overwhelming majority of experimentally obtained spectra reported in accord
with the theoretical predictions have, in fact, been temporal. Second, at least in
the case of developing flows that are not (statistically) spatially homogeneous over
the range of spectral scales of interest, the notion of a spatial spectrum and the
assumption of a statistically spatially homogeneous turbulent field is questionable.
Temporal spectra, derived from point measurements, do not have to contend with

this issue.

2. Experiment

The experiments investigated the scalar (concentration) field of round, axisym-
metric, momentum-dominated, turbulent jets issuing from contoured nozzles into a
large, quiescent discharge tank. The measurements were performed in the far field,
on the centerline of the jet. Details of the experimental apparatus have appeared

previously,’#~17 so only a brief overview will be presented here.

The experimental facility consists of three major parts: the jet plenum, noz-
zle, and delivery system; a large reservoir that acts as the discharge tank; and
the diagnostics, consisting of an argon-ion laser, focusing optics, collection optics,

detector, signal-processing electronics, and the subsequent data-processing. The
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working fluid is water, and the scalar is a laser dye (disodium fluorescein) which is

homogeneously premixed with the jet plenum fluid. The resulting Schmidt number,

Sc =

(1)

Q=

with v the kinematic viscosity of water and D ~ 5.2 x 10~%cm?/s the estimated

aqueous species diffusivity of the fluorescein dye (Ref. 18, p. 280), is 1.9 x 103.

The jet flow was established and maintained by pressurizing a downward ori-
ented jet plenum with gas. Both sonically-metered and blow-down, nearly constant
pressure, gas delivery configurations were used. The internal exit diameter of the jet
nozzle is 2.5mm (0.1in.). The rectangular discharge tank is square in cross-section,
approximately 2m high and 1m on edge. The tank bottom is over 600 nozzle di-
ameters downstream. Large glass windows on all four sides provided optical access
(see Ref. 15 for details).

The illumination source was an argon-ion laser (Coherent Innova 90). The
particular unit was custom selected for its low AM noise figure (~ —95dB) over
the frequency range of interest in these experiments. It was operated at a power
of 3.5W in the light-regulation mode. The beam was spatially filtered, expanded,
collimated, and subsequently focused to a small waist located on the centerline of
the jet. A low dye concentration was used in the jet plenum (~ 1076 M), with
correspondingly substantially lower concentrations at the measuring stations. A
more detailed discussion of this and related issues may be found in Refs. 14 and 15.
The emitted fluorescence intensity was then proportional to the local scalar (dye)
concentration c(X, t), that was, in turn, averaged over the extent of the measurement

volume.

The fluorescence emitted from the measurement volume was collected through
a narrow slit spatial filter. The beam profile and the slit width defined a small,
spatially-averaging volume, roughly spherical in shape and of extent (diameter)
£, =~ 50 um, as estimated by direct observation using a cathetometer. We will

return to this quantity later.
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A photomultiplier tube (RCA 8645) was used to detect the fluorescence emitted
from this volume. Its output signal was amplified by a custom-designed low-noise
transimpedance amplifier, low-pass filtered using a third-order Butterworth filter,
digitized, sampled with some margin with respect to ihe Nyquist frequency, and

stored for subsequent processing.

The measurements to be discussed here were made in the far field, on the axis

of the jet, for jet Reynolds numbers in the range of

where ug is the nozzle exit velocity, d the nozzle exit diameter, and v is the kinematic
viscosity. Data were also recorded at both lower and higher Reynolds numbers. The
lower Reynolds number jets, however, behaved substantially differently, by any of a
number of criteria, and were not accepted as representing bona fide turbulence.!* In
the other limit, the jet at the higher Reynolds number (Re = 10.2x 10*) produced a
distinct hissing sound. This was probably generated by the transient dilatation and
subsequent oscillations of small air bubbles caused by the rapid reduction in pressure
in such bubbles as they exited the nozzle, or by cavitation in the jet near-field region,
or both (note that the plenum gauge pressure is quadratic with Reynolds number).
See discussion and references in Ref. 19, pp. 452453, and Ref. 20, pp. 205-207, for
example. As a result, the Re = 10.2 x 10* jet was exposed to different near-field
conditions and will not be included in the discussion below. See Ref. 15 for a further

documentation of the data.

Finally, constraints dictated by resolution and statistical convergence, vis-d-vis
total number of large scale structures captured and length-of-run considerations,

led to measurement stations in the range,

8

100 < = < 305, (3)

U

where z is the distance from the nozzle exit.




3. Scalar power spectrum estimation

The fluorescence signal ¢(t), representing the photon flux incident on the pho-
todetector, is a linear function of the spatial average of the convected local jet-fluid
concentration ¢(x,t) over the measurement volume. It produces a signal that can
be approximated by a convolution over ¢(t) = ¢(xp,t), the jet fluid concentration

at, say, the center of the measurement volume, xo, .e.,
o0
o(t) ~ / ha(t —t)c(t')dt' = hy(t) ® c(t) - (4)
-00

In this expression, h,(t) models the impulse response of the spatio-temporal aver-
aging process, 1.e., the temporal signal that would be measured if a spatial delta
function of dye was convected through the measurement volume at the local flow

velocity. See Fig.1.

c(x,?)

NN

fluorescence

. 2
signal

AN

FIG.1 Sketch of jet fluid concentration field ¢(x,t), convected through the mea-
surement volume of extent ¢,.

The fluorescence output ¢(¢), along with fluctuations contributed by the small
laser intensity fluctuations, convected residual non-uniformities in the jet plenum
dye concentration, photon shot noise, electronic noise generated by the signal-
processing chain, etc., was processed by the Butterworth low-pass filter to produce
the total signal

s(t) = hp(t) ® ¢(t) + n(t) = h(t)®c(t) + n(t), (5)
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that was digitized and stored. In this expression, h(t) = hpp(t) ® ka(t) is the total

system transfer function and n(t) is the total, low-pass-filtered noise.

Assuming that the total system noise n(t) can be modeled as uncorrelated
with the local dye concentration time history ¢(t), the spectrum S,(w) of s(¢) can
be expressed in terms of the spectrum S4(w) of ¢(t) and the spectrum S,(w) of the

(low-pass filtered) noise n(t), i.e.,
Ss(w) =~ Sg(w) + Sn(w) , (6)

where, from Eq. 4,
Se(w) = |Ha(w)? Se(w) , (7)

with H,(w) = FT{ ha(t) }, the Fourier transform of h,(t). This allows us to relate
the total signal spectrum, S,(w), to the desired scalar fluctuation spectrum, S.(w),
of ¢(t), i.e.

Sy(w) =~ |HW)?Se(w) + Sp(w) = |Hu(w)]? Se(w) + Salw) , (8)
where H(w) = FT{h(t) } = Hpop(w) Hy(w).

For these experiments, the knee of the Butterworth low-pass filter was set sub-
stantially higher than the range of frequencies contained in Sg(w). Its main purpose
was to bandlimit the noise and de-alias the digitized measurements, allowing the
noise-floor to be determined, as will be illustrated in the spectra presented below.
This is the reason the modulus squared of Hyp(w), the transfer function of the
low-pass filter, can be ignored in Eqs. 7 and 8, and wherever it multiplies S¢(w)
and S.(w).

Figure 2 illustrates these relations by comparing the spectrum S,(w) of the
total signal s(t), i.e., fluorescence ¢(t) plus noise n(t), with Sg(w), the spectrum of
the fluorescence signal alone. The latter was calculated by subtracting the estimated
noise spectrum, Sy(w), from the total spectrum S,(w). Recalling Eq. 6, we have

Se(w) = S,(w) = Sa(w) . (9)
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The noise spectrum was assumed to be white, as was found to be the case in sepa-
rate measurements of this quantity (see also Ref. 21 for examples). Nevertheless, the
result is not sensitive to the assumed shape of the noise spectrum at low frequencies
where S4(w) dominates. The data processed to produce the spectra in Fig.2 were
recorded at z/d = 100, for Re = 1.25 x 10*. Note the high dynamic range of the
total signal spectrum, i.e., the (logarithmic) difference of the low-frequency power
to noise-floor power. Note also that the span to one-half the (scaled) sampling fre-
quency is well beyond the noise-cross-over frequency. As can be seen, the frequency

extent of the noise floor was substantial.

10910[5 (¢ !’6)/32 1’6]
d
1

total signal (Sg)
~—=== {luorescence (S,)

loggg(f tg)

F1G.2 Sample spectrum of the total signal (solid line: fluorescence + noise) and
estimated fluorescence spectrum (dashed line: fluorescence), derived from
measurements at z/d = 100, Re = 1.25 x 10*. Frequency scaled by 75(z),
the local large-scale-passage time.

The spectra in Fig.2, and throughout this paper, are normalized by €2, the
square of the local mean value of ¢(t), multiplied by the local large-scale-passage
time, 75(z), and plotted in terms of the circular frequency, f, scaled by 75(z). In

these coordinates, their integra.l produces the normalized variance, e.g.,

Sc(f"'é)
= - . (10)




The local large-scale-passage time, 75, is given by,

é(z)

ua(z) ’

75(z) (11a)

where

§(z) ~ 041z, (11b)

is the local outer scale of the flow, here identified with the (measured) mean trans-
verse extent (visual width) of the conical region enveloping the jet-fluid (Ref. 15,
Appendix D), and uq(z) is the mean centerline velocity. The latter was estimated
from the relation

ua(@) _ go_9 (11c)

u; T — I;

where u; is the jet velocity and z; the jet (virtual) origin, recommended by Chen
and Rodi.?? This spectrum and frequency scaling was found to produce similarity
with respect to the downstream coordinate, z/d, in the analysis of scalar spectra

measured in gas-phase jets.?3

The spectrum S.(w) of the scalar fluctuations c(t) can, at least formally, be
estimated by solving Eq.7, i.e.,

Se(w) = WS‘-’% : (128)

or Eq. 8, yielding a result in terms of experimentally estimated quantities, i.e.,

Ss(w) — Sn(w) .

W) = =P

(12b)

We should note, at this point, that Eq. 4, assuming a fixed h,(t), is not a proper
equation for two reasons. First, the fluid velocity convecting the ¢(x, t)-field through
the measurement volume is not a constant. Second, different scalar field lagrangian
trajectories through the measurement volume sample chords of different sizes (and
transit times) through it. These two effects could, in principle, be expressed as two
additional convolutions over the local velocity field and scalar paths through the

measurement volume. See Fig. 1.
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For frequencies, however, corresponding to spatial scales of the order of, or less
than, the extent of the measurement volume, ¢,, where the H,(w) transfer function
will have an effect on the measurement of the scalar spectrum, fractional fluctua-
tions in the convecting velocity are considerably smaller than fractional fluctuations
in ¢(x, 1), at least for this high-Schmidt-number fluid. They are also, largely, uncor-
related with them. Fluid paths through the measurement volume are also uncorre-
lated with the passively-convected scalar field. As a consequence, in estimating the
spectrum in the frequency neighborhood of

frs(z) =~ ;fr—xe) ) (13)

and above, these two effects do not contribute.

Alternatively, the most general expression of the linear dependence of the flu-
orescence signal, #(t), on the local jet-fluid concentration, ¢(t), is given by Eq. 7.
While Eq.7 follows from Eq.4, the converse is not true. Equation 4 is more re-
strictive, also requiring a definite phase relation between c(t) and ¢(t). Fortunately,
these (unknown) phase relations do not enter in the relation between the corre-
sponding spectra. We may conclude that Eqs. 7 and 12 represent valid relations for
the corresponding spectra, even as Eq. 4 cannot be accepted as a correct description

of the time-history of the fluorescence signal ¢(t).

The estimation of the scalar spectrum S.(w) in the frequency range influenced
by the spatio-temporal averaging of the measurement process also requires knowl-
edge of the H,(w) transfer function. This can be estimated, in turn, by noting that
it is dominated by a pole corresponding to the transit time of the flow through the

measurement volume, 1i.e.,

1
Hy(w) ~ TTiorn’ (14a)
with
o o (14b)
a (a4 uCI(z) .

Performing two different experiments, under as identical flow conditions as was
feasible, at two different spatial resolutions, we were able to compare the spectra,
forp=1,2,

S,, (w) =~ |H,,(<..J)|2 Sc(w) + S, (w) , (15a)
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corresponding to two different locations of the dominant pole, at, say, 7, = 1; and

Ta=T2>T7,te,forp=1,2,

1

Bw) ~ 555

(15b)

If the scalar spectrum, S.(w), could be assumed to be identical in the two experi-
ments (the corresponding noise floors were determined separately in each case), we

see that the ratio of the two fluorescence spectra,

Sd’l ~ Sal(w)- Sﬂx(w)

o~ = G(w;n,m2), 16a
Sor ~ Bup(@) = Bug(w) = CHTHT) (162)
would be given by
1 y o \2 1, forw<gl/m ;
G(w;T1,Ty) _l(ifz_)z_ = . (16b)
14+ (wmn) (r2/7)*, forw>1l/m ,

independently of the, as yet unknown, scalar spectrum, Sc(w).

N :

S, and Sp (x/d=100)

10910[5 (f ‘I’s)/sz 1’6]
d
1

i

Se (x/d=100)

\

Sc (x/d=305) \ \ 7
\
-9 1 ] l‘\
-1 0 1 2 3 4
loom(fq)

F1G. 3 Dotted lines: Fluorescence spectra estimated from measurements at z/d =
100 and Re = 1.25 x 10% at two spatial resolutions. Solid line: Estimated
concentration spectrum (Eq. 12) at z/d = 100 and Re = 1.25 x 10*. Dashed
line: Estimated concentration spectrum at z/d = 305 and Re = 1.2 x 10%.
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Two fluorescence spectra, Sy, = S,,(w) — Sn, (w) and Sy, = S,,(w) — Sn,(w),
from one such pair of experiments, at z/d = 100 and Re = 1.25 x 10%, are plotted
in Fig.3 (dotted lines). The fluorescence spectrum with the larger high-frequency
content is the one plotted in Fig.2. Power spectra were computed numerically
using a power spectral density estimation methodology that has evolved over the
past ten years, or so. A documentation of some of its earlier features can be found
in Ref.24. In processing the data in the experiments reported here, the power
spectral density estimation program computes spectra of data files by means of
FFT methods, and incorporates Hanning windowing, contiguous record overlapping,
and parabolic detrending, among other features. Records up to 2!7 points can be
accommodated. For spectra known to be smooth, the program can provide third-
octave (~ 1/10 decade) gaussian filtering, sampled at 20 points per decade, to
produce the final spectra. This feature was used for all the spectra plotted in
this paper, not so much for smoothing, but to reduce the number of points to a

manageable level for plotting purposes (note that 216 = 65,536).

10910 Glu: 71.72)

F1G.4 Computed ratio, G(w; 1, 72), of fluorescence spectra at z/d = 100 (Eq. 16).
Circles: Re = 1.25x10%. Squares: Re = 2.55x 10%. Solid line: Least squares
fit for 7, and 7.
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The ratios G(w; 71, T2) for a pair of spectra, measured at z/d = 100, at Re =
1.25 x 10* (circles) and a pair at Re = 2.55 x 10* (squares), respectively, are plotted
in Fig.4. As can be seen, the ratios of spectra measured at different Reynolds
numbers are very nearly the same, in accord with the a.ﬁalysis outlined above, even

though, as we will see below, the spectra themselves are Re-dependent.

The curve (solid line) in Fig. 4 is a least-squares fit for ; and 7, to the lower
Reynolds number data, that were characterized by the higher signal-to-noise ratio,
in the frequency range 1.0 < fr5 < 2.8. The lower limit of the fit range is chosen
so 2s to exclude (the small) run-to-run variations at frequencies well below those
affected by the spatial averaging. The upper frequency limit is dictated by the less
than unity signal-to-noise ratio at higher frequencies yet (cf. Fig. 2). The values for

71 and 7, estimated by this procedure were
27 /75 ~42x107  and 2771 /7s 6.6 x 1073, (17)

respectively. This corresponds to an effective spatial extent of the measurement
volume of £, =~ 69 um for the smaller of the two (Eq.13), in reasonable accord
with the visually estimated value of ~ 50 um using the cathetometer. This value
was used to calculate the concentration spectrum, S.(w), at z/d = 100 and Re =
1.25 x 10%, plotted as the solid line in Fig. 3. It was computed from the fluorescence
spectrum recorded at the higher resolution, using Eq. 12 with the estimated single-

pole transfer function H,(w) of Eq. 14, at , = 7;.

The effective pole locations for data recorded at z/d = 305 were more difficult
to estimate. At z/d = 305, the higher relative spatial resolution pushed the poles
closer to the noise cross-over point. On the other hand, at z/d = 3035, the (logarith-
mic) difference between the fluorescence and estimated concentration spectra was
much smaller over the frequency range of interest. Figure 5 plots the fluorescence
spectrum (dotted line) at z/d = 305 and Re = 1.2 x 10* as well as the estimated
concentration spectrum (dashed line). As can be seen, the effects of compensation,
in this case, are much smaller (¢f. difference at, say, fr; ~ 2.7 in Figs. 3 and 5).
The estimated concentration spectrum at z/d = 305 in Fig.5 is the one plotted as
a dashed line in Fig. 3.
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F1G.5 Dotted line: Fluorescence spectrum. Dashed line: Estimated concentration
spectrum. Data recorded at z/d = 305 and Re = 1.2 x 10%.

The jet fluid concentration spectra to be discussed below were all estimated
in this fashion. The values of 7,, the transfer function time constant used in the
compensation calculations, were fixed for all the data measured at each z/d axial
location (Eq.17, for measurements at z/d = 100, depending on which slit width
was used to record the fluorescence data). A fixed pair of values was also used for
all the data measured at z/d = 305.

4. Results and discussion

The conspicuous agreement between the concentration spectra at z/d = 100
(solid line) and z/d = 305 (dashed line) in Fig.3, up to frequencies limited by
signal-to-noise ratio consiri¢ “ations, should be noted. A similar independence of the
scaled spectra with downst: wm location was also found to hold in gas-phase jets,?
where the relatively lasz. - .uffusion scales, at Sc ~ 1, and comparable Reynolds
numbers made it possible to estimate the concentration spectra with enough spatial
resolution directly, obviating the need for the compensation scheme employed here.
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In the case of the present, liquid-phase data, we should entertain the possibility
that the collapse of the spectra may be attributable to a fortuitous choice of the
compensation pole. Some observations, however, are rglevant here. First, the close
agreement between the two spectra also holds in the f75 < 2 frequency range,
where the effects of compensation, even for the z/d = 100 data, are negligible.
As we will see below, this will also be found to be the case at higher Reynolds
numbers. Second, the value of the pole represents a single parameter. In contrast,
the collapse of the spectra at the two axial locations, with substantially different
degrees of compensation in each case, is over 5 orders of magnitude in the power
spectra. Conversely, this collapse supports the validity of the single-pole model for

the leading order behavior of the measurement transfer function.

— x/d=100
-  x/d=305
~e—  peference slope

10g4ol(# v4)5/3-spectrum)
)
1

-4 1 ] ]
-1 0 1 2 3 4

10910( L { 'r‘)

F1G.6 Frequency-scaled concentration spectra. Solid line: z/d = 100 and Re =
1.25 x 10%. Dashed line: z/d = 305 and Re = 1.2 x 10*. Dotted line:
reference line at a 2/3 slope, corresponding to a k! spectrum.

It is useful to plot the product of the concentration spectra with f3/3, as is
commonly done. A spectrum described by a -5/3 power-law yields a horizontal
line over the -3/3 frequency range when plotted in this fashion. The product of
the concentration spectra with (f75)%/3, derived from the data at z/d = 100 and
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z/d = 305, at Re = 1.25 x 10* and Re = 1.2 x 10%, are plotted in Fig.6 as the
solid and dashed line curves, respectively. Also plotted, for reference, is a straight
line with a slope (logarithmic derivative) of 2/3, corresponding to the high-Schmidt
number Batchelor k~! theoretical spectrum.* |

logyql(f 15)5/ 3. spectrum]

-1 1] 1 2
logyg(f 1g)

w
a

FI1G.7 Frequency-scaled concentration spectra. Solid lines: z/d = 100 data (1.25 <
Re x 10™* < 7.7). Dashed lines: z/d = 305 data (1.2 < Re x 10™* < 6.5).
Individual spectra are offset by —2log,,(Re/Reg), Reg = 1.2 x 104, for
clarity.

The solid lines in Fig. 7 plot spectra derived from measurements at z/d = 100,
for Re x 10~ = 1.25, 1.76, 2.55, 3.6, 5.1, and 7.2. The decrease in the scaled
frequency resolved, in the z/d = 100 spectra, as the speed of the flow increased
with increasing Reynolds number, is evident. The dashed lines plot spectra mea-
sured at z/d = 305, for Re x 10™% = 1.2, 2.4, 4.0, and 6.5. As can be seen, the
highest frequency resolved in the z/d = 305 spectra is a much weaker function of
Reynolds number, signal-to-noise ratio limitations being more serious than spatial
resolution at this station. Individual spectra for both z/d stations are plotted offset
by —2log;o(Re/Rep), with Rep = 1.2 x 104, to aid in visualizing the evolution of
trends with Reynolds number.
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The longer characteristic local time scale at z/d = 305 did not allow as many
large scale structures to be included in the record. As a consequence, the statistical
convergence of the z/d = 305 spectra is not as good as for the z/d = 100 data.
On the other hand, the higher relative spatial resolution at z /d = 305 allowed the
spectrum to be estimated to a higher (scaled) frequency. That trade-off aside, the
agreement between the (scaled) spectra at z/d = 100 and z/d = 305 holds for all
the cases for which data were recorded at the same, or nearly the same, Reynolds

number at the two stations.

-3.0 . : A
-1 0 1 2 3 4

10910( f T‘)

F1G. 8 Frequency-scaled concentration spectra derived from data at z/d = 100 and
1.25 < Re x 10™* < 7.2 (no offsets).

Following the transition out of the large scale frequency regime (frs ~ 1), the
spectra appear to be described by a power-law with an exponent that is increasing
from, roughly, 1.2 to 1.5, in absolute value, with increasing Reynolds number (cf.
Ref. 15, Fig. 5.2). This progression with Reynolds number is easier to discern in
Fig. 8, which plots the concentration spectra at z/d = 100, for Re x 10™* = 1.25
(solid line), 1.76 (dashed line), 2.55 (dot-2-dash), 3.6 (2-dot-2-dash), 5.1 (dot-
dash), and 7.2 (2-dot-dash), with no offsets. The extent of the power-law regime
can be seen to increase slightly with increasing Reynolds number. A similarly
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increasing spectral slope (in absolute value) with Reynolds number was also noted

in measurements of gas-phase spectra,?? for Re x 10™* = 0.5, 1.6, and 4.0.

As can be seen by sighting along the spectra in Fig.8, the power-law region
is followed by a different regime at higher frequencies yet. This regime does not
support the Batchelor k~! prediction* that should apply for over a decade and a
half in frequency in this case (recall that Sc &~ 1.9 x 10® here). This can be seen in
Fig. 6, which includes a dotted line with a reference slope of 2/3, corresponding to a
k=1 spectrum. The spectra at increasing Reynolds number move even further from
this slope, as can be seen by comparing the Re = 1.2 x 10* spectrum with those at
higher Reynolds numbers in Fig. 8. It should be noted that this conclusion extends
to frequencies below f7s ~ 2, which are unaffected by resolution and compensation

considerations.
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F1G.9 Spectrum slope (logarithmic derivative). Solid lines: data at z/d = 100 and
Re = 1.25 x 10%. Dashed line: z/d = 305, Re = 1.2 x 10*.

To facilitate the study of this higher frequency regime, we also computed the
slope of the spectra (logarithmic derivative). A plot of spectrum slopes, for the
lower Reynolds number data, appears in Fig.9. These were derived from the two
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z/d = 100, Re = 1.25 x 10* spectra in Fig.3 (solid lines) and the z/d = 305,
Re = 1.2 x 10* spectrum (dashed line). Their comparison helps assess issues of
statistical convergence and confidence in this more delicate statistic, as well as the

effects of spatial resolution and the applied compensation.

The plots in Fig.9 suggest a frequency-dependence of the slope of the spectra
that is close to a straight line, in these coordinates, for frequencies higher than
f1s =~ 1.2, at this Reynolds number. This linear behavior extends for a decade
and a half and into frequencies beyond which the data are limited by resolution and
signal-to-noise considerations. The straight line appears to be a good representation
for frequencies below frs = 2, for which the effects of compensation were negligible
even for the z/d = 100 data (¢f. Fig.3). For frequencies above f75 = 2, the same
straight line also describes the behavior for both the /d = 100 and z/d = 305
data, which were affected by resolution (and compensation) to a different extent
(cf. Figs. 3 and 5).

spectral slope

logio(f 1")

FI1G. 10 Slope (logarithmic derivative) of spectra from data at z/d = 100 and 1.25 <
Re x 10~* < 7.2. Spectra offset as in Fig. 7. Line types as in Fig. 8.
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A straight line for the logarithmic derivative of the spectrum corresponds to a
spectrum that is parabolic in log-log coordinates, or log-normal in linear coordinates,

i.e.,

Sc(frs) exp{—;} [a In(f7s) +‘b]2} ) (18)

This expression, rather than a £~! power law, seems to be the appropriate de-
scription of our jet fluid concentration spectra at high frequencies, over a range of

frequencies at least as large as v/ Sc, i.e., a decade and a half, in this case.

Figure 10 plots the local slope (logarithmic derivative) of the spectra in Fig. 8.
The offset scheme employed in Fig. 7, and line-types employed in Fig. 8, were also
used here. Straight lines can be seen to be a good representation for the spectrum
slope at high frequencies with Reynolds number dependent values of the param-
eters a and b in Eq.18. The end of the power-law regime and the beginning of
the log-normal range can be seen to shift to higher frequencies with increasing
Reynolds number. Our data admit a Kolmogorov scaling for the Reynolds num-
ber dependence of this transition frequency, i.e., Re3/%, but corresponding to the
convection (passage frequency) of a physical scale roughly 80 times larger than the
estimated Kolmogorov scale (computed using the estimated mean centerline energy
dissipation?® and the kinematic viscosity). This transition is not very well defined,

however, and other Reynolds number scaling possibilities cannot be ruled out.

5. Conclusions

This work has investigated temporal scalar (jet fluid concentration) power spec-
tra on the centerline of high Schmidt number turbulent jets, in the Reynolds number
range 1.2 < Re x 10™* < 7.2. Our spectra exhibit a power-law regime at frequen-
cies above the local large scale passage frequency, with a Reynolds number depen-
dent exponent increasing (in absolute value) from, roughly, —1.2 to ~1.5 over the
Reynolds number range investigated. This corroborates a similar finding for gas-
phase jet fluid concentration spectra measured at comparable Reynolds numbers.?
At higher frequencies, the spectra are well represented by a log-normal relation with
Reynolds number dependent coefficients. While our data admit a Kolmogorov-like
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scaling for the beginning of the log-normal region in the spectrum, i.c., ~ Re®/*,
other possibilities cannot be ruled out.

We appreciate that our results are at odds with the classical picture of high
Schmidt number scalar spectra. We do not find a ~5/3 power-law regime, even
though our measurements were conducted at Reynolds numbers where such behav-
jor has previously been reported for high Schmidt number jet fluid scalar spectra.2®
Finally, despite adequate resolution and signal-to-noise ratio, our data do not sup-
port the Batchelor k=1 power-law prediction.? Specifically, we found no constant
k~! slope at high frequencies and a spectral slope that does not even locally attain
a value of —1.

On the whole, our scalar spectra are rather similar to those derived by Gargett
from ocean measurements.!! In conjunction with her data and analysis, the current
results raise further questions about the universal descriptions of scalar spectra, and

their applicability to some of the canonical flows, such as turbulent jets.
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1. Introduction

A correct description of turbulent mixing is particularly taxing on our under-
standing of turbulence; such a description relies on an account of the full spectrum
of scales. Specifically, to describe the entrainment stage that is responsible for
the engulfment of large pockets of irrotational fluid species into the turbulent flow
region,! the large scale flow structures need to be correctly described. Secondly, to
describe the subsequent kinematic stirring process that is responsible for the large
interfacial surface generation between the mixing species, the intermediate range of
scales must be correctly accounted for. These are below the largest in the flow in
size, but above the smallest affected by viscosity and molecular diffusivity. Finally,
the dynamics at the smallest scales must be captured to describe the molecular
mizing process itself. These three phases of turbulent mixing were clearly identifi :d
as “more or less distinct stages” in the 1948 description of mixing by Eckart,2 who
dubbed them as the initial, intermediate, and final stages, respectively. In the case
of mixing of high Schmidt number fluids, i.e., fluids characterized by a molecular
diffusivity, D, that is much smaller than the kinematic viscosity, v, it is also useful
to distinguish between the vorticity-diffusion stage, whereby velocity gradients are

removed, and the species-diffusion stage, which removes scalar gradients.’

On the other side, successful descriptions and models of mixing provide us
with tests of aspects of turbulent flow that are difficult to probe by other means
— experimentally, numerically, or theoretically — at the high Reynolds numbers of

interest here.

An exciting discussion in the context of mixing by chaotic advection has been
taking place during the last decade. See, for example, Refs. 4-7, as well as several
papers from the 1990 IUTAM Symposium on Fluid Mechanics of Stirring and Mixing
(Published in Phys. Fluids A 5, Part 2, May 1991). There is little doubt that this
progress will contribute to our understanding in the context of the broader issues
of turbulent mixing. The present discussion, however, will be limited to flows at
Reynolds numbers that are high enough for the turbulence to be regarded as fully-
developed. In that regime, the impact of the recent progress in the. behavior of

deterministic, chaotic systems has yet to be felt, in my opinion.
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As a practical matter, fully-developed turbulent flow typically requires that the
local flow Reynolds number, i.e.,

Re(z) = 222) M

must be high enough. Generally speaking, turbulence cannot be sustained if the
(local) Reynolds number falls below some minimum value, Rep;,. In the expression
in Eq. 1, the characteristic velocity, U(z), and transverse extent of the flow, §(z),
are to be taken as local values.

The main part of the discussion will be drawn from turbulent mixing in the far
field of nonaccelerating (negligible streamwise pressure gradient) shear layers and
jets. While these two flows are similar, in many ways, they are sufficiently different
in others to be useful as test beds of ideas and prospects for universal descrip-
tions of turbulent mixing behavior. The phenomena are found to have a broader

manifestation, however, with conclusions relevant to turbulent flow in general.

In the case of shear layers, the characteristic velocity will be taken as the
(constant) freestream velocity difference, i.e., Ug(z) = AU # fn(z), whereas the
characteristic length will be taken as the local shear layer width, i.e., 64(z) x =z.
Assuming constant fluid properties, s.e., v = const., this yields a local Reynolds

number for shear layers that increases linearly with the streamwise coordinate, 1.e.,
Reg(z) < = . (2a)

In the case of jets, the characteristic velocity will be taken as the local centerline
velocity of the jet, i.e., Uj(z) = uc(z) o« ™!, while the local length scale will be
taken as the local jet diameter, i.e., §(z) = §;(z) x z, yielding a local jet Reynolds

number that is a constant of the flow, i.e.,
Rej(z) # fn(z) . (2b)

This difference between shear layers and jets in the dependence of the local Reynolds
number is interesting in the context of spatially developing flows and the evolution

of the distribution of scales and turbulence spectra.
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As we increase the flow Reynolds number, from small values to values approach-
ing some minimum Reynolds number for fully-developed turbulence, the flow is able
to generate ever-increasing interfacial area between the mixing species, increasing
mixing and, in the case of chemically-reacting flow, chemical product formation and
heat release. Beyond this transition region, i.e., for Re > Rep,, the Reynolds num-
ber dependence of the amount of mixed fluid can be expected to be weaker. In fact,
a tenet of fully-developed turbulent flow theory is that, at high enough Reynolds
numbers, the dependence of the various mean flow quantities on Reynolds number

should become negligible, or vanish.

On the other hand, mixing depends on the behavior of gradients in the flow as
well as concentration of diffusing species and the “principle of self-similarity with
respect to Reynolds number cannot be expected to be applicable ..., since these
gradients are determined by small-scale fluctuations.” (Ref.8, p. xvi) We will ex-
amine these propositions by comparing the outcome of experimental investigations

on turbulent mixing conducted in both gas- and liquid-phase shear layers and jets.

2. Transition Reynolds numbers in shear layers and jets

‘A qualitative difference in the appearance of the scalar field is observed across
the transition in a shear layer to a more well-mixed state, as the Reynolds number
is increased, as illustrated in Fig.1. The transition to a more well-mixed state in
a gas-phase turbulent shear layer was documented by Konrad,? who used an aspi-
rating probe!? to estimate the local value of the high-speed stream fluid fraction,
averaged over the resolution volume and time-response of the aspirating probe. Sub-
sequent estimates of mixing and chemical product volume fraction in liquid-phase

! using a pH indicator, as well as estimates derived from probability-

12

shear layers,!
density functions (pdf’s) measured using laser-induced fluorescence techniques,

documented the same behavior.

The results from the two liquid-phase shear layer measurements are plotted
in Fig.2, which depicts the estimated chemical product thickness as a function

of the local Reynolds number at the measuring station. A marked increase in




FiG.1 Laser-induced fluorescence streak images of the scalar field in a liquid-phase
shear layer, for Re ~ 1.75 x 10® (left) and Re ~ 2.3 x 10* (right). Data from
Ref. 12, Figs. 7 and 9, respectively.

the estimated chemical product can be seen to occur at Re ~ 10% This is also
. associated with a change in the pdf of the scalar fluctuations. In the pretransition
region, the pdf of the conserved scalar in the flow is dominated by the near-delta-
function contributions of the unmixed (pure) fluid from each of the freestreams.!?
In the posttransition regime, the composition of the mixed fluid across the layer
develops a preferred value that is well-correlated with the one inferred from the
estimated overall entrainment ratio for the layer.3:2 The pdf evolves from one limit
to the other in the course of this transition (cf. Ref. 12, Sec. 5.4, and Ref. 13), with
a relatively long memory of the (typically, much larger) initial asymmetry in the

relative amounts of each of the freestream fluids.

As noted in the discussions of these experiments,!!!? finite resolution limita-
tions in these liquid-phase experiments overestimated the absolute amount of chem-
ical product by, roughly, a factor of two, as confirmed in chemically-reacting exper-
iments which measured the chemical product volume fraction directly.!? Neverthe-
less, the documented increase in the amount of mixing at the transition Reynolds
number is qualitatively correct and was found to occur at the same Reynolds number

in both gas- and liquid-phase shear layers.!4
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F1G.2 Reynolds number dependence of chemical product volume fraction, in a
liquid-phase shear layer, in the vicinity of the mixing transition.’> Note that
absolute values are overestimated in both experiments (see text).

The transition to a more well-mixed state, in these experiments, was correlated
with the appearance of streamwise vortices and the ensuing transition to three-
dimensionality of flow that is nominally two-dimensional in the initial region.!1—15
See discussion in the review paper by Roshko.!® Corroborating evidence was also
found in the numerical simulations of time-developing shear layers by Moser &
Rogers that followed the developing flow to sufficiently high Reynolds numbers to

document the beginning of this behavior.!?

The transition to a more well-mixed state in turbulent jets is less conspicuous
than in shear layers. Turbulent jets being three-dimensional, even at low Reynolds
numbers, such a transition is not correlated with a transition to three-dimensionality
in the flow field. Nevertheless, there is, again, a qualitative difference in the ap-
pearance of the scalar field for values of the Reynolds number that are lower than
Remin = 10* and values that are comparable to that, or higher. This is illustrated
in the laser-induced fluorescence images in Fig. 3, of the jet-fluid concentration in
the plane of symmetry of liquid-phase jets.!® Unmixed reservoir fluid (black) can be
seen throughout the turbulent region and, in particular, all the way to the jet axis
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in the lower Reynolds number (left) image at Re; ~ 2.5 x 10® (imaged field spans
0 < z/d < 35, where d is the jet nozzle diameter). This is not the case in the higher
Reynolds number (right) image at Re; ~ 10* (imaged field spans 0 < z/d < 200),
in which jet fluid of varying concentrations can be seen to be more volume-filling

within the turbulent region.

F1G.3 Jet-fluid concentration in the plane of symmetry of a round turbulent jet.
Left image: Re; ~ 2.5 x 10° (0 < z/d < 35). Right image: Re; ~ 10*
(0 < z/d < 200). Data from Ref. 18, Figs. 5 and 9.

Seitzman et al.!? investigated the outer entrainment and mixing region, using
laser-induced fluorescence images of OH radicals in a Hj-air turbulent diffusion
flame. A qualitative evolution in the complexity of the thin burning regions can
be seen, as the Reynolds number was increased from 2.3 x 10° to 4.95 x 10* (cf.

their Fig. 3). In these experiments, this evolution is also influenced by decreasing
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FIG.4 Normalized variance of jet-fluid concentration on the axis of a turbulent
jet, as a function of the jet Reynolds number (Ref.22, Fig. 7.2). Circles:
Liquid-phase jets.2? Triangles: Gas-phase jets.?®

buoyancy and the decreasing relative importance of baroclinic vorticity generation,

as the Reynolds number was increased, and is, therefore, not entirely attributable

to Reynolds number effects.

Similar behavior is reflected in the measurements of the rms of the scalar (jet
fluid concentration) fluctuations on the axis, in the far field of gas- and liquid-
phase jets, as a function of jet Reynolds number.2°=22 The data, in the form of the
normalized scalar fluctuation variance, are plotted in Fig. 4 (Ref. 22, Fig. 7.2). The
liquid-phase data exhibit a decrease in the fluctuation level with Reynolds number,
with a rather less sensitive dependence for Reynolds numbers higher than Re =
2x 104, or so. Noting that lower fluctuation levels correspond to more homogeneous
mixing, i.e., a pdf of concentration values that are more tightly clustered around
the local mean, we see that, at least for the case of a liquid-phase jet, the flow
transitions to a more well-mixed state as the Reynolds number is increased, as in
the shear layer, even though in a more gradual manner (¢f. Fig.2). A much weaker
Reynolds number dependence of the normalized scalar variance can be seen for the

gas-phase-jet data.
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The Reynolds number dependence of turbulent mixing and chemical product
formation in turbulent jets was recently investigated in gas-phase jets.?3?* In this
context, the turbulent diffusion flame length, L¢, is important and marks the dis-
tance from the nozzle required to mix and burn the reactant carried by the jet
fluid. If the stoichiometry of the jet/reservoir reactants and jet entrainment are
held constant, and for fast chemical kinetics (high Damkohler number limit), the
flame length dependence on the various flow parameters provides us with a measure
of the dependence of mixing on those parameters. Decreasing flame lengths, for

example, imply faster (better) mixing.

The dependence of the flame length on the stoichiometry of the jet-/reservoir-
fluid chemical system must first be factored in the analysis. In particular, for a
momentum-dominated, turbulent jet diffusion flame, the flame length is linearly
dependent on the (mass) stoichiometric mixture ratio (e.g., Refs. 25-27), i.e.,

L

d—j ~ A¢m + B, (3)
where ¢, is the mass of reservoir fluid required to completely consume a unit mass of
jet fluid. The measurements must then be regarded as investigations of the behavior
of the stoichiometric coefficient, A, and normalized virtual origin (intercept), B, and

their dependence, in turn, on the flow parameters.

In these experiments, long platinum wires were stretched across the turbulent
diffusion flame and spaced in equal logarithmic increments along the jet axis. These
permitted the line-integral of the temperature rise, AT(z,y), due to heat released
in the chemical reaction, to be measured along the y-coordinate (transverse to the

jet axis), as a function of the downstream coordinate. See Fig. 5.

The experiments utilized the F2 + NO chemical reaction, with F; diluted in N,
forming the jet fluid, and NO diluted in N, forming the quiescent reservoir fluid.
With this chemical system, an adiabatic flame temperature rise, AT;, as low as TK
was realized (with the reaction still in the fast-kinetic regime). Such low values
were dictated by the results of a separate investigation that assessed the effects of
buoyancy and ascertained that the measurements were realized in the momentum-
dominated regime for this heat-releasing flow. The Reynolds number was varied by

varying the pressure in the combustion vessel.
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F1G.5 Turbulent jet diffusion flame combustion vessel schematic, indicating the jet
and the logarithmically-spaced temperature-sensing wire array.

If the temperature rise, AT(z,y), in the chemically-reacting jet is normalized
by AT;, the adiabatic flame temperature rise for the reaction, the line integral across

the jet axis can be used to form a product thickness, ép(z), analogous to the one
defined for shear layers, i.e.,

* AT
(@) = [ S3E0 e @)

(cf. Ref. 28, Sec. 3.1.3; Ref.29, Sec. 1.9; and Ref. 30, Egs. 41 and discussion fol-

lowing). Sample data are depicted in Fig.6, for a range of values of the (mass)
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stoichiometric mixture ratio, ¢,,. The data plot the product thickness ép, normal-
ized with the length, Ly, of the platinum resistance wire used to measure the line

integral, versus the logarithm of z/d*, where d* is the jet source diameter.?’

-25 T T T T T

sp/L,,

.00 | 1 1 1 H
1.4 1.6 1.8 2.0 2.2 2.4 2.6

logio(x/d')

F1G.6 Product thickness vs. log;o(z/d*), for several stoichiometric mixture ratios
(Ref. 24, Fig. 5).

To analyze these data, we note that for regions of the flow well upstream of
the dame length, t.e., for £ < Lg¢, the entrained reactant is consumed on, or just
outside, the boundary of the turbulent region. There, the turbulent fluid is jet-
fluid-reactant rich and it need comprise only a small fraction of the mixed fluid to
consume the entrained reservoir-fluid-reactant. The diffusion/reaction process then
takes place in a relatively thin peripheral reaction zone at y = *R,(z),* whose
ensemble-averaged radius, R;(z), is proportional to z. As a consequence, the line
integral of the time-averaged temperature rise across the turbulent region increases
as the chemical reaction releases heat in the thin reaction zones at the edges of the

turbulent region.

& This picture is corroborated by the OH-images obtained by a number of investigators in Hqp-air
jet flames (cf. Refs. 19 and 31, for example).
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It was conjectured that the radial integral of the temperature rise, at a given

station z, increases in proportion to the entrainment velocity at that station,
ue[Ri(2)), t.e.,

oo
i/ AT(z,r)dr < u.[R:(z)] AT; , (5)
dz Jo
or, for a momentum-driven, turbulent jet,
© AT(z,y) dz  dz
d/_w AT Y X aR@ <7 (6)

Integrating this relation and scaling with the flame length L¢, we have

ép(z < Ly) ~ z
I, _alog(Lf)‘{-b. (7)

This dependence of the line integral on z suggested the logarithmic wire spacing
used in the experiment and was used in the analytical form of the fit for the line-

integrated, time-averaged, temperature-rise data (cf. Fig. 6).

Beyond the end of the flame region, i.e., for z > L, no further heat is released
and, in the absence of buoyancy effects, the temperature excess becomes a passively-

convected scalar with a self-similar profile. In that case,

AT(z,y) ~ AT(z,0) f(%) - % f(%)

and the product thickness line integral becomes independent of the downstream

coordinate, z, i.e.,

o0

s> L) o« [ f(Y) d # taGe) - ®)

-0

As can be seen in Fig. 6, the experimental results confirmed the conjecture for
z & Ly. They were also consistent with the anticipated conserved-scalar behavior
of the temperature rise for £ > Ly, i.e., a product thickness that asymptotes to a
constant value. Such data allow us to estimate the flame length, L. In particular,
one can accept an operational definition of L¢ as the location where the product
thickness line integral (Eq. 4) has attained 99% of its asymptotic value, as one does

on the basis of a boundary layer velocity profile, for example.
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Figure 7 (Ref. 23, Fig. 4.8) plots the stoichiometric coefficient, A, in the ex-
pression for the flame length (cf. Eq.3), i.e., the slope of the flame length vs. the
stoichiometric mixture ratio ¢m. This can be regarded as the additional length, in
units of the jet source diameter d*, required to entrain, mix, and react with a unit

increase in the stoichiometric ratio of the jet-/reservoir-fluid chemical system, i.e.,

_d L¢ :
4= %, (d_) | ©)
In the fast kinetic regime, as was the case in these experiments, this quantity is a

useful measure of mixing. It separates the self-similar, far-field behavior from that

of the virtual origin in the overall mixing process.
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O Present Study
© Dahm et al (1984)
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A Dowling (1988)
i A
a
< 8 -
O
6 - -
o o 3 o
4 I | 1
3.5 4.0 4.5 5.0 5.5
log4gRe

F1G. 7 Flame length stoichiometric coefficient A (Eq. 3). Squares: Gas-phase chemi-
cally-reacting jet data.?® Diamond: Laser-induced fluorescence, liquid-phase
data.’? Lambda: pH-indicator, liquid-phase data.?®*? Triangles: Flame
length data inferred from gas-phase, nonreacting data (see text).34

The data in Fig. 7 indicate that mixing in the far field of a turbulent jet improves
relatively rapidly with increasing Reynolds number. Specifically, A decreases until a

Reynolds number of, roughly, 2 x 104, with a much weaker dependence on Reynolds
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number, if any, beyond that. These data are in accord with the nonreacting, liquid-
phase data in Fig. 4, which also indicate improved mixing up to Reynolds numbers
of 2 x 104, or so, with a weaker dependence beyond that. The latter data, however,
do not permit the separation of the far-field and virtual-origin contributions to the
overall mixing process, as do the chemically reacting jet data. We should also note
that the near- and intermediate-field behavior, which contributes to the virtual
origin of the mixing process and the resulting flame length, does not exhibit the

same Reynolds number dependence.??

A potential difficulty should be recognized between the inferred behavior based
on the nonreacting, gas-phase jet data (triangles),** and the chemically-reacting,
gas-phase data (squares).?? Two observations are relevant here. The values es-
timated from the nonreacting gas-phase data (triangles) were derived assuming
certain similarity properties of the concentration pdf and the virtual origin of the
whole process (see discussion in Ref. 34, Sec. 5.4, and Ref. 21, Appendix B).

Partly as a consequence, as was also noted in the comparison between the data
in Figs. 4 and 7, it is not possible to separate the contribution to the flame length
of the (rather large) virtual origin of the mixing process, and its dependence on
Reynolds number,?? from the Reynolds number dependence of the far-field mixing

process, i.e., the dependence of the flame length stoichiometric coefficient, A.

While this may be a minor point, we may wish to note that transition Reynolds
numbers for jets seem to be twice as large as for shear layers. On the one hand,
the two flows are sufficiently different to admit differences in their behavior of a
factor of 2, or so, in Reynolds number. On the other, however, if the characteristic
large scale é(z) chosen for the local Reynolds number definition of a jet is the local
radius, as would be appropriate if the length scale in the general case is defined as
the transverse spatial extent across which the shear is sustained, then the transition

Reynolds number for jets becomes very close to that for shear layers.
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3. Mixing in fully-developed turbulence

In fully-developed turbulent shear layers, beyond the mixing transition, mixing
also exhibits a weaker dependence on Reynolds number. Figures 8a and 8b plot
experimentally obtained data of the normalized chemical product thickness, i.e.,

bp(zid) _ 1 [%AT(z,4:9)
6(z) 6(z) oo ATi(9)

dy (10)

(¢f Eq.4), for both low (Fig.8a) and high (Fig.8b) values of the stoichiometric
mixture ratio ¢. The stoichiometric mixture ratio, in this case, denotes the parts
(moles) of high-speed fluid required to consume a part (mole) of low-speed fluid in
the shear layer mixing zone (e.g., Ref. 30). The product thickness data in Figs. 8a
and 8b were normalized by the 1% temperature rise product thickness, é1, which

has been found to be close to the visual thickness, éyis, of the shear layer.1:12:30,35

8p/67
N
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Fi1G.8a Low-¢ normalized product thickness vs. Reynolds number for a turbulent
shear layer. Matched free-stream density, incompressible, gas-phase shear
layers: ¢ = 1/8 (square), ¢ = 1/4 (circle).3> Vertical lines: ¢ = 1/8.36
Triangles: ¢ = 1/8.37 Supersonic shear layers: ¢ = 1/4, p/p, = 0.71,
M, = 0.51 (arrow); ¢ = 1/3, p2/py = 5.95, M. = 0.96 (diamond).3®
Liquid-phase shear layer: ¢ = 1/10 (cross).!?
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F1G.8b High-¢ shear layer normalized product thickness vs. Reynolds number.
Matched free-stream density, incompressible, gas-phase shear layers: ¢ = 8
(square), ¢ = 4 (circle).3® Triangles: ¢ = 8.37 Supersonic shear layers:
¢ =4, p2/pr = 0.71, M. = 0.51 (arrow); ¢ = 3, p2/py = 5.95, M. = 0.96
(diamond).?® Liquid-phase shear layer: ¢ = 10 (crosses).!2

These data were all derived from chemically-reacting shear layer experiments,
conducted in the fast chemical-kinetic regime, i.e., high Damkohler number limit.
In this limit, all molecularly mixed fluid produces chemical product, as dictated by
the stoichiometry of the mixed fluid composition (cf. discussion in Ref. 30, Sec. IV).

The chemically reacting experiments were conducted for low and high values
of the (molar) stoichiometric mixture ratio, ¢, that can be expected to yield near-
stationary values of the product thickness ép(¢), with respect to ¢. The chemical
product thickness has a rather sensitive’ dependence on ¢, as the stoichiometric
mixture fraction, {4 = ¢/(¢+ 1), approaches zero or unity, as a result of the regions
near the delta functions corresponding to the pure fluid in the composition pdf.39+4°
Data points indicated by crosses were derived from experiments in liquid-phase
flows.}2 All other data were based on results from gas-phase flows. The plotted
points based on the experiments by Frieler®” and Hall et al.3® were calculated by
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Chris Bond from the original temperature-rise data.® Data at the highest values
of the Reynolds number were derived from chemically-reacting, supersonic shear
layers (M; > 1, M, < 1)* and, as a consequence, can be assumed to be susceptible
to the combined effects of couipressibility as well as ‘Reynolds number. We note
here that even though the velccity ratio, r = U, /U, for the supersonic shear layer
experiments was very low, and should perhaps not be included in the same plot
as the subsonic shear layer experiments for which r ~ 0.4, the molar entrainment
ratio, E,, i.e., the ratio of the number of high-speed freestream fluid moles per
mole of low-speed freestream fluid entrained, was estimated to be close to its value
for the incompressible flow experiments. Specifically, for the incompressible Jow
experiments,®123% E. ~ 1.3. The estimated values for the compressible shear
layers were E, ~ 1.07, for the M, ~ 0.51 shear layer (r ~ 0.24), and E, ~ 1.2, for
the M, ~ 0.96 shear layer (r ~ 0.10).3841:42

Several observations can be made on the basis of these data:

a. In the limit of fast kinetics, the chemical product formed decreases as
the Reynolds number increases. This implies less efficient mixing in fully-
developed shear layers as the Reynolds number increases. Presently avail-
able data suggest that this is opposite the behavior exhibited by turbulent
jets (recall data in Figs. 4 and 7, and related discussion).

b. The data admit a Reynolds number dependence of the chemical product
thickness for the low-¢ case (Fig. 8a) that is stronger than the high-¢ case
(Fig.8a).¢ If this is proven to be the case, it would imply a complicated

dependence of the pdf of compositions on Reynolds number.

c. Liquid-phase shear layer mixing exhibits a weaker Reynolds number de-
pendence than gas-phase shear layer mixing (c¢f. Fig. 8b). Unless the data
foi turbulent jets should all be regarded as not in fully-developed flow (cf.
Fig. 4), this is also opposite the behavior found in turbulent jets.

b Private communication.

€ Recall that, for these flows, the high-speed stream fluid is preferentially entrained.3
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Based on the presently available scant experimental data and unless the region
2x10% < Re < 10°® conceals a second transition to a Reynolds-number-independent

turbulent mixing state,

d. the trend in Figs. 8a and 8b suggests that, af least at low compressibility,
e.g., up to the lower of the two convective Mach numbers investigated,

Reynolds number effects dominate compressibility effects.

The latter observation must be regarded as the most tentative and must await the

results of further experimental investigations to be confirmed.

It is interesting that in the case of mixing in turbulent jets, gas-phase data
for the flame length indicate only a weak Reynolds number dependence beyond the
mixing transition, if any (Fig. 7). Measurements in liquid-phase jets, however, at
Reynolds numbers as high as 7.2 x 104, yield scalar spectra that have not converged
to a Reynolds-number-independent state,*? in accord with the data in Fig. 4.

Finally, it is noted that some of these observations are at variance with the in-
ferences drawn in a review by Broadwell & Mungal,** of earlier data. The interested

reader is directed to that discussion for further details.

4. Transition Reynolds numbers in other flows

The observations of mixing transitions in shear layers and jets suggest that a
minimum Reynolds number may be required for turbulence to develop into a more
well-mixed state in these flows. Specifically, we must have Re > Remin, with Remin
in the neighborhood of 0.5 x 10* to 2 x 10*, for fully-developed turbulent flow. It is
interesting that this value does not appear to be peculiar to the far-field behavior
in turbulent jets and free-shear layers. Other flows also exhibit similar transitions

at comparable values of the Reynolds number, as we’ll discuss below.

Pipe flow, for example, transitions out of its slug/puff regime to a less inter-
mittent, fully-turbulent state over a range of Reynolds numbers that depend on the
entrance conditions. This sensitivity to initial conditions diminishes, however, at a

Reynolds number in the vicinity of 104 .4°
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The Coles’ turbulent boundary layer wake parameter, II, that scales the outer
flow region of a turbulent boundary layer,*® is found to increase with Reynolds
number, for a zero-pressure-gradient boundary layer, attaining an asymptotic value
of Il = 0.620 at a Reynolds number, based on displacement thickness,*” of Re =
Ueo 6* /v ~ 0.8 x 10%. See Refs. 48 and 49, for a discussion, and Ref.49, Table 4
and Fig. 6, for a compilation of low-speed, turbulent boundary-layer flow data.

In experiments by Liepmann & Gharib, in the near field of turbulent jets, the
number of azimuthal nodes in vortex structures becomes difficult to identify beyond
a certain Reynolds number, where the flow transitions to a much more chaotic
state.>® The authors correlate this transition with a laminar-turbulent transition in
the jet nozzle boundary layers. It is also interesting, however, that it occurs at a

Reynolds number very close to 10%.

In recent experiments on lifted-flame behavior, Hammer notes a change in
the scaled lift-off height of turbulent jet flames at a jet Reynolds number, in the
neighborhood of Re = 1.8 x 10*, beyond which the Reynolds number dependence
is weaker. See data in Ref. 51, Fig. 3.8, and discussion following.

In his review of bluff-body flows, Roshko documents several regimes, as indi-
cated by the behavior of the base pressure of a circular cylinder, as a function of
Reynolds number.?? In particular, the (negative) base pressure is found to increase
in the range of Reynolds numbers of 0.3 x 10* < Re = Ugo dey1 /v < 2 x 10* (Ref. 52,
Fig. 1). Roshko attributes this behavior to a transition in the separating shear

layers.

Measurements of the scaled turbulent kinetic energy dissipation rate,
a = — (11)

in flow behind square grids, where ¢ is the kinetic energy dissipation per unit mass,
¢ is the longitudinal length scale, and u' is the rms streamwise velocity fluctuation
level, suggest that it decreases relatively rapidly with increasing Taylor Reynolds

number,

Rer = s (123)
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where At is the Taylor microscale, until a value of Ret ~ 70, and then becomes
much less sensitive to Reynolds number, attaining a value of o ~ 1 at higher
Reynolds numbers. This value may not be universal, however, with measured values
in the range 1 < a < 2.7 behind non-square grids.%3

A similar conclusion was arrived at by Jimenez et al.,* in their numerical
simulations of turbulence in a spatially-periodic cube, in the range 36 < Ret < 170.
They report a value of a ~ 0.65 attained for Ret > 95. Since

Rer ~ Re'/? | (12b)

it, again, appears that Re > Rep;, =~ 10* is a necessary condition for fully-developed
turbulent flow.5%%

In thermal convection, a transition from “soft turbulence” to “hard turbulence”
has been noted for Rayleigh numbers given by Ra = 102, that is marked by a
qualitative change in the pdf of the measured temperature fluctuations.>¢ Since
Re =~ Ra'/? for this flow,57 we again recover a minimum Reynolds number boundary
of the fully-developed turbulent state at Re =~ 10%.

Careful experiments were recently performed that measured the torque in
Couette-Taylor flow, in the range of Reynolds numbers of 800 < Re < 1.23 x
106 .58:59 These experiments revealed a “well-defined, uon-hysteretic transition” in
a narrow range of Reynolds numbers, 10* < Re;; < 1.3x10*. The flow was found to
be qualitatively different, below and above this transition, as illustrated in the flow-
visualization data reproduced in Fig.9, with pre- and post-transition differences
reminisceat of the corresponding ones in jets (cf. Fig.3). See also additional flow-
visualization data in Ref. 58, Figs. 1a,b. Beyond this transition, the dependence
of the torque on Reynolds number becomes progressively weaker. Significantly,
however, the torque does not attain viscosity-independent behavior to the highest

Reynolds numbers investigated.




FIG.9 Couette-Taylor flow-visualization data at (a) Re = 0.6 x 10%, and (b) Re =
2.4x10*%. From Ref. 59, Figs. 5a,b, reproduced by kind permission of Prof. H.
Swinney.

5. A criterion for fully-developed turbulence?

The preceding observations suggest there may exist a property of turbulence
that induces it to transition to a more well-mixed state, is associated with Reynolds
numbers in excess of Ren, =~ 10%, and appears to be rather independent of the
details of the flow geometry. The following is a proposed ansatz to account for this

behavior.

That this transition appears to be independent of the flow geometry indicates
that the explanation should not be sought in the large-scale dynamics, or the de-
velopment of distinct features and organized patterns in these flows. These are,
typically, flow-geometry dependent. One is rather led to consider the physical sig-

nificance of the various scales of turbulence and their Reynolds number scaling.
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The 1941 Kolmogorov proposals hypothesize that the dynamics in the (inertial)
range of scales A that are unaffected by the outer scale §, but are large compared
to the inner, dissipation (Kolmogorov) scale,

Ak = (2)1/4 , | (13)

t.e., for

Ak € A K 6, (14)

can be treated in a universal, self-similar fashion. In this range of scales, for example,
the energy spectrum is predicted (and found) to exhibit a power-law behavior with

a -5/3 exponent.®?

To refine the bounds in Eq. 14, we appreciate that independence from the dy-
namics of the outer scale, 8, requires that the scale A be smaller than a scale that
can be gcnerated directly from the outer scale §. Such a scale would an outer lam-
inar layer thickness, Ap, that can be generated by a single é-size sweep across the
whole transverse extent of the turbulent region, for example. The size of this scale
can be estimated in terms of the 99% thickness of a Blasius boundary layer, for

example, that is growing over a spatial extent 4, i.e.,

A
—6£ ~50Re"1/? | (15)

It is a scale connected by viscosity to the outer scale, §, of the flow. By virtue of its
dependence on Reynolds number (cf. Egs. 12 and 15), this scale, as noted by H. W.
Liepmann in private conversation many years ago, is closely related to the Taylor

microscale, At.

At the other end of the spectrum, the requirement that the motions must be
inviscid with respect to the inner dissipation scales dictates that the local scale
A must be large with respect to an inner viscous scale, A, (c¢f. Fig.10) that can
be taken as proportional to the (defined) Kolmogorov dissipation scale, Ax. This
allows us to refine the inequality that bounds the inertial range of scales (Eq. 14)

to the one below, i.e.,

AK Ay A )
—3—<-6~<-6'<——<1, (16)
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FIiG.10 Schematic of the outer scale, §; the Taylor scale, A1; and the viscous scale,
Av, in a sheared turbulent region.

as a necessary condition for fully-developed flow.

To translate this inequality to a relation for the Reynolds number, we need the
Reynolds number dependence of the ratio of the various scales to the outer scale
6. We can rely on Eq. 15 for the estimate of the outer laminar-layer thickness, Ap,
suggested by Liepmann. Following on his suggestion, it is interesting to compare
that to the Taylor scale for a turbulent jet, for example. For turbulence in the
far field of a jet, the Taylor scale, A, can be estimated from the Taylor Reynolds
number on the jet axis (Eq.12). This is approximately given by

Rer ~ 14Re'/? (17)

on the jet axis.2?2! Using the value of u’ 2~ 0.25 u., on the axis of the turbulent jet,

and 6(z) ~ 0.4 (z — z4) for the local jet diameter, we obtain

-’\61 ~ 23Re'/? | (18)
which is a little smaller but close to the Liepmann laminar-layer thickness, A\p (a
prefactor of 2.3 for At, vs. 5.0, for Ap), especially considering that it is estimated

from flow properties on the jet axis.

An appropriate inner viscous scale, A,, can be estimated in terms of the wave-

number k,, where the energy spectrum deviates from the - 3/3 power-law behavior,
or, k, Ak ~ 1/8.6162 This yields,¢3

~ 50 Ak . ' (19)

Ay &

b
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To estimate the Reynolds number and outer scale dependence of ), , we can use the
expression from Friehe et al.,2%%* for the energy-dissipation rate on the jet axis, in
the far field, i.e.,

o aq W0 do \' .
€ o 48-(-1;(;:;) ) (20)

where uy is the jet nozzle velocity, dy is the jet nozzle diameter, and zq is the virtual
origin of the far field turbulent flow. Substituting in Eq. 13 we then have
AK

5 = 0.95 Re™3/4 | (21)
and, therefore, for a turbulent jet,
1\3"- ~ 50Re3/* . (22)
Substituting for AL, A,, and Ak in Eq. 16, we obtain
Re™3/* < % ~ 50 Re~3/% « % < -‘\“‘6—"‘ ~ 50Re™ % < 1. (23)

The range of intermediate inviscid scales, i.e., scales smaller than A\, but larger
than ),, can be seen to grow rather slowly with Reynolds number. Specifically, the

ratio

N = Amax , (24a)

'\min
which measures the extent of the uncoupled range of spatial scales, i.e., the number

of viscous scales within a Taylor scale, is given by
N = 0.1Re'/* (24b)

where the (approximate) factor of 0.1 was estimated for a turbulent jet. This
is indicated schematically in Fig. 11. In other flows, we can expect the uncoupled
range of scales to exhibit the same Reynolds number dependence (Eqs. 24a,b), with,
possibly, a different prefactor, however.

On the basis of these observations, it can be argued that a necessary condition
for fully-developed turbulence and the 1941 Kolmogorov similarity ideas to apply
is the existence of a range of scales that are uncoupled from the large scales, on the
one hand, and are free from the effects of viscosity, on the other. Considering that

we must have

(24¢)
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F1G.11 Reynolds number dependence of spatial scales for a turbulent jet.

with some margin, we see that the existence of such a range of scales requires a
minimum Reynolds number of the order of 10* (Eq. 24b); a value in accord with the
minimum Reynolds number identified for transition to fully-developed, well-mixed
turbulent flows.

Jimenez et al. performed measurements of velocity fluctuations in a two-dimen-
sional shear layer and found a power-law regime in the energy spectrum, with an
exponent close to —5/3, developing in the neighborhood of the mixing transition.®?
Subsequent investigations of the mixing transition by Huang and Ho also associated
the development of a —5/3 spectral regime with the mixing transition, correlating it,
however, with the number of pairings rather than with local values of the Reynolds
number.%¢ Nevertheless, in both these investigations, the Reynolds number in the
vicinity of the mixing transition and the development of the -5/3 spectrum regime
was found to be in the range of 3 x 103 < Re(z) < 10%, in accord with the range
documented in Fig.2. To the extent that the appearance of a -5/3 spectral regime
marks the development of an inertial range of scales and the applicability of the
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1941 Kolmogorov ideas, these experiments lend further credence to the ansatz.

6. Conclusions

The preceding discussion of the experimental evidence and the theoretical
ansatz supports the notion that fully-developed turbulence requires a minimum
Reynolds number of the order of 10* to be sustained. This value must be viewed as
a necessary, but not sufficient, condition for the flow to be fully-developed. Presently
available evidence suggests that both the fact that the phenomenon occurs and the
range of values of the Reynolds number where it occurs are universal, i.e., indepen-

dent of the flow geometry.

On the other hand, how sharp this transition is does appear to depend on the
details of the flow. In particular, it is remarkably sharp, as a function of Reynolds
number, in the (Couette-Taylor) flow between concentric rotating cylinders. It is less
well-defined for a shear layer and, among the flows considered, the least well-defined
for turbulent jets. Perhaps an explanation for this variation lies in the definition
of the Reynolds number itself (Eq. 1) and the manner in which the various factors
that enter are specified for each flow. In the case of the Couette-Taylor flow, for
example, both the velocity Uct = Q2 a and the spatial scale éct = b — a, where 2
is the differential rotation rate, with a and b the inner and outer cylinder radii, are
well-defined by the flow-boundary conditions.>®

In the case of a zero streamwise pressure-gradient shear layer, the velocity
Ua = AU = U; — U; is a constant, reasonably well specified by the flow bound-
ary conditions at a particular station. The length scale &, = 64(z) = (é(z,t)),,
however, must be regarded as a stochastic variable in a given flow with a relatively
large variance. The Reynolds number for the shear layer is then the product of a
well-defined variable and a less well-defined, stochastic variable.

In the case of a turbulent jet, both the local velocity U; = Uj(z) = (uc(z,t)),
and the length scale §; = §(z) = (é(z,t)),, or §(z) = (R(z,t)),, the local
jet radius, must be regarded as stochastic flow variables, each with its own large
variance. The Reynolds number for the jet is then the product of two stochastic
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variables and, as a consequence, its local, instantaneous value is the least well-

defined of the three.

Viewing the Reynolds number itself as a stochastic variable, it would appear
that the hierarchy of the sharpness of the transition to the fully-developed turbu-
lent state is correlated with the sharpness with which the flow and the boundary
conditions allow the values of the local Reynolds number to be specified to the

dynamics.

A related issue also arises as a consequence of the definition of the local
Reynolds number. As noted in the discussion of Eqgs. 1 and 2, the Reynolds number
for a shear layer increases with the downstream coordinate, whereas the Reynolds
number for a jet is a constant of the flow. As a consequence, a shear layer may
possess regions with local Reynolds numbers below the minimum and transition to
fully-developed turbulence, within the spatial extent of the same flow, if its stream-
wise extent is large enough. A turbulent jet, on the other hand, is either fully
developed over its whole extent, or is not. This is also relevant to the description

and dynamics in other flows.

As regards fully-developed turbulent flow, the presently available evidence does
not support the notion of Reynolds-number-independent mixing dynamics, at least
in the case of gas-phase shear layers for which the investigations span a large enough
range. In the case of gas-phase turbulent jets, presently available evidence ad-
mits a flame length stoichiometric coefficient A (cf. Eq.3) tending to a Reynolds-
number-independent behavior (c¢f. Fig. 7). We appreciate, however, that the range
of Reynolds numbers spanned by experiments to date may not be large enough to
provide us with a definitive statement, at least as evidenced by the range required
in the case of shear layers (cf. Figs. 8). Secondly, the flame-length virtual origin, B
(Eq. 3), possesses a maximum in the neighborhood of the transition Reynolds num-
ber of Re =~ 2 x 10* and does not appear to attain a Reynolds-number-independent
behavior in the same range of Reynolds numbers.??> We should also recall that
the torque in Couette-Taylor flow does not attain a Reynolds-number-independent
behavior to the highest values of the Reynolds number investigated.>® Neither, of

course, does the skin-friction coefficient in a turbulent boundary layer over a smooth
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flat plate.

In comparing shear-layer with turbulent-jet mixing behavior, the more impor-
tant conclusion may be that they appear to respond in the opposite way to Schmidt
number effects, i.e., gas- vs. liquid-phase behavior. Specifically, it is high-Schmidt
number (liquid-phase) shear layers that exhibit a low Reynolds-number dependence
in chemical product formation, if any (cf. Fig. 8b). In contrast, it is gas-phase turbu-
lent jets that exhibit an almost Reynolds-number-independent normalized variance
of the jet-fluid concentration on the jet axis, with a strong Reynolds-number de-

pendence found in liquid-phase jets, in the same Reynolds-unber range (¢f. Fig. 4).

To summarize, recent data on turbulent mixing, as well as evidence garnered
in other contexts, support the notion that fully-developed turbulent flow requires
a minimum Reynolds number of 10%, or a Taylor Reynolds number of Ret ~ 102,
to be sustained. Conversely, turbulent flow below this Reynolds number cannot be

regarded as fully-developed and can be expected to be qualitatively different.

The manifestation of the transition to this state may depend on the particular
flow geometry, e.g., the appearance of streamwise vortices and three-dimensionality
in shear layers. Nevertheless, the fact that such a transition occurs, as well as
the approximate Reynolds number where it is expected, appears to be a universal
property of turbulence. It is observed in a wide variety of flows and turbulent flow

phenomena.

In contrast, studies of mixing in fully-developed turbulent jets and shear layers
suggest that we cannot hope for a universal description of turbulent mixing. The
dimensionless parameters that scale the relative importance of the molecular diffu-
sivity coefficients, such as viscosity and species diffusivity, must not only enter in

this description, but are likely to do so in a non-universal way.

It is interesting that transition to turbulence, at intermediate values of the
Reynolds number, appears to be universal, whereas mixing in fully-developed tur-

bulence, at high Reynolds numbers, does not.
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A method for computing one-dimensional unsteady compressibie
flows, with and without chemical reactions is presented. This work has
focused on the accurate computation of the discontinuous waves that
arise in such flows. The main feature of the method is the use of an
adaptive Lagrangian grid. This allows the computation of discon-
tinuous waves and their interactions with the accuracy of front-tracking
algorithms. This is done without the use of additional grid points
representing shocks, in contrast to conventional front-tracking
schemes. The Lagrangian character of the present scheme also allows
contact discontinuities to be captured easily. The algorithm avoids
interpolation across discontinuities in a natural and efficient way. The
method has been used on a variety of reacting and non-reacting flows
in order to test its ability to compute accurately and in a robust way
compilicated wave interactions. © 1993 Academic Press, Inc.

1. INTRODUCTION

Several methods for computing unsteady inviscid com-
pressible flows have appeared in the literature in recent
years. The emphasis has been on the ability of these numeri-
cal schemes to compute accurately discontinuous waves
which develop and their interactions.

High-resolution shock-capturing methods for hyperbolic
conservation laws is one category of such methods which
have been used successfully in recent years. A basic feature
of these methods is that the conservative formulation is used
which allows for shocks and their interactions to be
captured automatically without special effort. This is
characteristic of all older shock-capturing methods,
such as the Lax—Wendroff scheme [8], the MacCormack
scheme [107, the original Godunov scheme [5]. In all such
methods, discontinuous waves of the solution are represen-
ted as steep fronts, i.e., smeared over a finite number of com-
putational cells. A second and more important feature of
recent high-resolution schemes is the special effort which is
made to achieve higher order spatial and temporal accuracy
so as to represent discontinuous waves of the solution as
accurately as possible, i.e., to reduce the smearing effect
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which is typical of all shock-capturing methods. Such
schemes are the TVD schemes [6, 7], the various MUSCL-
type schemes [15], the PPM scheme [3] (piecewise
parabolic method), etc. A comparative study of some of
these schemes for real gases is given in a review article by
Montagn¢ er al. [11]. The basic high-resolution shock-
capturing methods have been developed for nonlinear scalar
hyperbolic conservation laws. It is for this case that there
exists a sound mathematical theory. For nonlinear hyper-
bolic systems of equations in one space variable the theory
is not as clear and the numerical methods used for these
systems apply formally the same techniques as in the scalar
case, but with the additional use of exact or approximate
Riemann solvers. A classical Riemann problem is solved
locally at each computational cell boundary in order to
compute the various flux terms required. This is the essen-
tial ingredient of the original Godunov scheme and it is pre-
sent in most successful high-resolution schemes. The various
flux-vector splitting techniques [14, 16] have essentially
incorporated in them an approximate Riemann solver.
Finally, their extension to more than one space dimension
is usually done by treating each spatial dimension
separately.

Another category of numerical schemes that have been
used is that of the shock-fitting or front-tracking methods.
Although they have not been used as extensively as the
shock-capturing methods, they have been quite successful in
one-dimensional problems. A good review of these methods,
as well as of many shock capturing methods, is given by
Moretti [12]. These schemes are typically based on a non-
conservative formulation and an effort is made to detect and
identify the various discontinuous waves and compute their
interactions explicitly. This is usually accomplished by
introducing additional computational elements repre-
senting such waves and using the Rankine-Hugoniot jump
conditions. This technique leads to complex programming
logic. Identifying the waves and computing their interac-
tions accurately is crucial for obtaining a meaningful and
stable solution. For flows with complicated wave inter-
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actions such schemes may not be as robust as the shock-
capturing schemes, even in one space dimension.

The research presented in this paper is part of a greater
effort which aims to combine the characteristics of the
above two categories of numerical schemes and to develop
a method which will share the advantages and eliminate
most of the disadvantages of both. This has been accom-
plished in the case of one-dimensional flow by the scheme
presented in this paper. The increased accuracy which is
provided in the computation of complicated wave inter-
actions and its robustness have made this scheme especially
valuable for the computation of reacting gas flows, where
detonation waves are present.

The scheme is based on a conservative shock-capturing
Godunov-type scheme, very much like van Leer's MUSCL
scheme [15]. The new feature, introduced here, is an adap-
tive Lagrangian grid which increases the accuracy with
which discontinuous waves and their interactions are
computed. Without introducing additional computational
clements, i.e., refining the grid, or special computational
elements to represent these waves, the shocks and contact
discontinuities are computed as true discontinuities,
without the smearing effect typical of shock-capturing
methods. This makes the scheme different from adaptive
mesh refinement schemes (e.g., see Berger and Oliger [2]),
which smear discontinuities, although on a much finer local
grid. The basic conservative shock-capturing capabilities of
the scheme are not diminished. The scheme is endowed with
the capability to track various fronts and, thus, the shock-
capturing and the front-tracking ideas are combined
properly. It is important to note that the adaptive grid
strategy, to a certain degree, is independent of the particular
solver. Any Godunov-type scheme may be used. The
Riemann solver is the link that provides the information
about local wave interactions needed for the adaptive
procedure.

It was deemed interesting to try this scheme on one-
dimensional flows of reacting gases in light of the increased
accuracy and robustness with which detonation waves and
their interactions could be computed. The interest in such
flows is evident by the number of papers appearing in
the literature. For example, numerical calculations, with
increased accuracy, of the one-dimensional instability of
plane detonation waves may be of great interest in confirm-
ing existing theories which are based on linear stability
analysis (e.g., see Lee and Stewart [9]). The present scheme
is able to reduce the error caused by the numerical smearing
of the leading shock of the detonation wave. This error
may be very important in the development of detonation
instability.

The computer code developed is also able to compute
one-dimensional cylindrically and spherically symmetric
flows, as well as plane flows with area change. It is thus
possible to compute explosions and implosions and study

LAPPAS, LEONARD, AND DIMOTAKIS

the effect of curvature on detonation wave speed and
stability. Most of the results presented are basically valida-
tion runs and calculations demonstrating the abilities of the
method and the potential use for specific one-dimensional
problems of interest. All results shown are for a perfect gas.
The difficulty of incorporating a general equation of state is
the same as in most schemes and independent of the main
feature of the present scheme, i.e., the adaptive Lagrangian
grid strategy.

2. NUMERICAL METHOD

2.1. Mathematical Formulation

The inviscid flow of a reacting mixture of calorically
perfect gases is considered. The assumption of a simplified
reacting mixture is made, according to which there are two
species present at any time, the reactant and the product.
The reactant is converted to the product by a one-step irre-
versible exothermic chemical reaction. This assumption is
made in order to compare with the many theoretical and
numerical results which are available in the literature for
this case. The chemical reaction rate is given by the standard
Arrhenius law

2= —KzT*exp(—E/R,T), (1a)
where z is the mass fraction of unburnt gas, K is a positive
constant, which essentially gives a time scale, E is the activa-
tion energy of the chemical reaction, R, is the gas constant,
T is the absolute temperature, and a is also a constant. The
simplified Arrhenius model, where the reaction rate is a step
function depending on the temperature, has ai-- been used.
For the simplified model the rate is given by

2= —KzH(T-T.), (1b)
where
1, x>0
H = ’ ]
(x) {0’ x<0, (2)

and T is a given critical temperature.

The problem under consideration is a special case of the
general problem of solving numerically the nonlinear
hyperbolic system of the form

8U SFU)
o ax - o)

(3)
where U is the appropriate solution vector. As usual, x
denotes the Eulerian space variable. If the Lagrangian
formulation is used, a system of exactly the same form is
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obtained. The space variable x, then, is replaced by a
Lagrangian space variable and the flux vector F(U) is
changed appropriately. For non-reacting flow, G(U)=0.
Most numerical methods use Eq. (3) as their starting point
and, using a finite volume discretization, obtain the scheme
of the following general form

At . . ~
U}'H=U,'-'—Z;(F}+J/2“F}—i/z)+l” G, 4)

giving the solution, in an average sense, in the jth cell at the
time level 7 + 1. The numerical flux terms F are computed at
the boundaries of each cell. An important feature of every
numerical method is the calculation of these flux terms in a
way that guarantees stability and high-order accuracy.

A slightly different approach will be taken in deriving the
present scheme. Eventually, it will be of the general form
given in Eq. (4). It is useful to formulate the problem by
writing the conservation laws in integral form for an
arbitrary control volume V(t), whose bounding surface S(7)
moves with a velocity u, (Reynolds’ transport theorem).
These equations will be applied to each computational
volume of the discrete numerical scheme. This is done so
that the conservation equations and their discrete counter-
parts are- written in a way which is independent of the
Eulerian or Lagrangian formulation that will be adopted
eventually. Moreover, it is easier to see from these equations
how the idea for the adaptive nature of the grid is motivated.
The conservation equations in integral form are

d
Z jymp CRN (5)
ij pudV+J‘ pu(u—uy)-dS
dt V() S(1)
+ pdS=0, (6)
S(r)
if pe,dV+I pe(u—u,)-dS
dtiyy )
+[ pu-ds=o, ™)
S(1)
ij pde+J pz(u—uy)-dS
dt vin S(1)
-j' ipdV =0. (8)
V()

These are written for an arbitrary control volume V{(1),
whose bounding surface S(7) has a velocity u,,. In the above
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equations, e, is the total specific energy, which includes the
chemical energy, i.e.,

9)

e,=e+3ut+qoz,

where e is the specific internal energy, g, is the heat release
of the chemical reaction, and u = |u| is the magnitude of the
fluid velocity. The perfect gas assumption is also made, i.c.,

p=(r—1)pe. (10)

Since the boundaries of the computational cells will be
moving, it is useful to consider the flow map

x =X(§, 1), (11)

which gives the position of the fluid particle that was
initially (1=0) at the position § Thus, § is convenient
Lagrangian marker for the fluid particles in the flow. If the
Lagrangian approach is taken, the local boundary velocity
is equal to the local fluid velocity, i.e., u, =uin Egs. (5)-(8).

2.2. Spatial and Temporal Discretization

Consider now the case of one-dimensional flow. A finite
volume formulation is used, i.e., space is discretized by a set
of computational cells as shown in Fig. 1. The conservation
equations are now written for the jth cell of the computa-
tional grid

dm
—L+(p Auy)j 12— (p duy);_ 1 =0,

dtj (12)
d
7 (mu;) + (pu Auy); 12— (pu duy);
+Pjr12— Pi-12=0, (13)
2 myeq) + (pe, dun); 1= (pe, du), 1z
+up)js1p—(up);_,p=0, (14)
%("‘Fi)"’ (pz duy); 412
—(pz du,);_p—2;m;=0Q, (15)

. space
th
jheell variable
FIG. 1. Finite volume discretization in one space dimension. The
space variable can be the Eulerian x or the Lagrangian £. The boundaries
of the jth cell are denoted by the subscripts j + §.
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where
duy, = u— uy,

X2
ijJ‘ p dx,

-2

T+ 112
m,u,ej pu dx, (16)

X -2

X412
m,elizj ple+3u? +qo2) dx,

X112

%12
’"/Z/EI pz dx.

AT Fod

Average values of all quantities in the jth cell are denoted
by the subscript j and values of various quantities at the two
boundaries of the cell are denoted by the subscripts j+ 1.
Note that average values are mass-averaged values. By
defining

Fm‘=-p Aub’
F,=pudu,+ p,
) (17)
F,=pe, Au, + pu,
F.=pz du,,

the equations of motion can be written in the more familiar
form

dm;
th"’ (Fr)jsrp—(Fp)j—12=0,
d
Py (mu)+(F)je12—(F.);-12=0,
(18)

d
Z (mjelj) + (Fe)j+ 12— (Fe)j— 12= 0,

d .
E (mjzj) + (F:)j+ 2= (F:)j— 12 =m;z;.

Note the extra degree of freedom provided in the flux terms
by the, as of yet unspecified, term Au,. The motion of the
cell boundaries is determined by

dx;
—EHE = ()11 (19)
t
and the average density in each cell is given by
m.
py=——t—— (20)

;= .
Xir12 = Xj— 12
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The equation of state (10) provides the means for com-
puting the average pressure in the jth cell,
Pj=()’j_l)Pj(e(j"qozj—%“})- (21)

The exact integral conservation laws have been written
for each computational cell. Equations (18) will now be
integrated in time explicitly. The basis for the method is a
conservative Godunov-type scheme similar to the MUSCL
scheme introduced by van Leer [15]. The procedure
followed in solving these equations is similar to that used in
most methods, which are higher-order extensions of the
original Godunov scheme. At every time instant, average
values of the solution are known in each computational cell.
Linear variations of the primitive variables, i.e., density p,
pressure p, and velocity u, are assumed in each cell. A
Riemann problem is then set up locally at each cell interface.
The solution to this problem gives the velocity, pressure and
density needed to compute the flux terms (17). The different
feature in the present scheme is that the Lagrangian
formulation is used instead of the Eulerian and that an
adaptive grid is used.

So far, the fact that the Lagrangian formulation is being
used, has not appeared explicitly in the description of the
method. It is now that this choice is made and all quantities
are considered as functions of time ¢ and the Lagrangian
space coordinate £. The interpolation procedure is carried
out in &-space and, assuming linear variation, the generic
quantity g varies as

q(§)=q;+(g),; (- ¢)), (22)
in the jith cell, where g; is the mass-averaged value in the cell,
&; is the center of the cell (in Lagrangian space), and (q,); is
the slope of ¢ in this cell, which is assumed to be constant.
Note that discontinuities of these quantities are allowed at
the cell interfaces, as shown in Fig. 2.

The slopes are chosen using the van Leer slope limiter
[17], but the adaptive nature of the grid, which will be

q

9.

>

n Fin

jteell

i space

variable

FIG. 2. Linear variation of the generic quantity ¢ in the jth cell.
In general, g is discontinuous at the cell interfaces.
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described next, makes the choice of limiter less important
than in the typical higher-order Godunov-type schemes. In
fact, the adaptive grid allows more freedom in choosing the
interpolation scheme, because additional information on
the location of the various waves is always available at
each time instant. The slope (q,), is computed, following
van Leer [17], by

(ge);=ave(q; . q; ) (23)
where

. 49,— 4, +_9i+1—49;
g; =L g 1 T (24)

N é,‘"ij—l 1 €j+l’é.i

X+ vy (x—y)?

X, V= - 1- £} ] ’

ave(x, y) =28 [ x-+y2+c2] (25)

and ¢’ is a small constant (c2 < 1).

At each cell interface, two constant states ¢~ and ¢* are
required to be used as the initial condition for the Riemann
problem. There are many ways of doing this. One way is to
specify for the j + 3 interface

9,12=9,+(4e); (50 12— 8)),

(26)
9 12=901 @)1 o2 —= 1)

i.., the values of g on either side of the interface, as given by
Eq. (22). Using these states does not ensure second-order
accuracy in time. The method used in the present scheme is
shown in Fig. 3. The domain of dependence of (=¢;, ,,,
over the time interval 41 is estimated by the characteristics
at the time level 1. In the Lagrangian formulation of the
problem the characteristic speeds are given by

c,=+2a 27)
Po
At
At
c, C.
/ -
= ~ >
AL- AR+ 3
jH12

FIG. 3. The constant states g%, which are to be used as the initial
condition for the Riemann problem at the interface j + }, are obtained by
averaging the linear interpolant over the domains of dependence 45 *.
These domains correspond to the full timestep 41.
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where p,, is the initial density (r=0) and a is the speed of
sound. The constant states g* are then determined as the
averages of Eq. (22) over the domains A¢*; Fig. 3. These
domains correspond to the full timestep 4¢. This is equiv-
alent to tracing the characteristics back from the time
t+ 4t/2 and using the linear profile (22). This ensures
second-order accuracy in time.

The discrete scheme, giving the solution at the time level
n+ 1 from the solution at the previous time level n, can now
be written as

(m)"* ' = (m,))y" — At[(E,), 4 12— (F), 121,
(mu,)"* ' = (mu) — 8t[(F )0 12— (FL) 123

(m,-e,,-)’” '= (mjelj)" - A’[(ﬁe),-» 12— (I:-z)j-— 12} (28)

(m;z)"* = (m;z,)" — A[(F.), s 12— (F.); 2]
+ A1(m,z,)",

n+1 _ _n
X 12 =X 12t AUy ); 4 12,

where the numerical fluxes F,,, F,. F., and F. are given by
Eqs. (17), using the solution of the Riemann problem. The
average boundary velocity u, for each interface is still
unspecified, but for the majority of interfaces u, = u and the
last of Eqs. (28) is second-order accurate in time. The
source term in the species equation is shown in Eqgs. (28) as
being evaluated at the time level n. It is better to integrate
the source term in a “split” manner, ie., integrate the first
four equations in (28) without the source term and use this
intermediate state to estimate the term m,Z;. This splitting
has been implemented in the present scheme.

The stability requirement on the timestep is that of a
MUSCL scheme in the Lagrangian formulation. No addi-
tional stability problems arise due to the adaptive grid
strategy presented in the next section.

2.3. Adaptive Grid

The motivation for the adaptive grid comes from the
definition of the flux terms, as given by Egs. (17). The term
4du,, or, equivalently, the velocity of the cell boundary u,,
is unspecified. The idea is to specify it at each cell interface,
so that all important discontinuous waves coincide with cell
boundaries, at every discrete time level. The solution of the
Riemann problem at a given interface provides all the
information needed to identify all the important waves
emanating from this interface, as well as their strengths and
speeds. This information is enough to specify 4u,,. Since all
important waves coincide with cell boundaries, it is guaran-
teed that, at subsequent time instants, the evolution of these
waves will be determined properly by the solution of the
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local Riemann problems. In the numerical experiments
carried out, shock waves computed by the local Riemann
solvers were considered important enough to track if the
shock Mach number was greater than 1.01 and contact dis-
continuities were considered important if the ratio of the
densities on either side was greater than 1.05. These
parameters are quite conservative. One may want to track
only the very strong shock waves in the flow.

The grid is, basically, Lagrangian, i.e., most cell bound-
aries move with the local fluid velocity and, hence du, =0.
It is easy to see that the same ideas on the adaptivity of the
grid can be used on a grid that is primarily Eulerian. The
same equations can be applied directly.

An example of this adaptive procedure is shown in Fig. 4.
A strong shock wave moving to the right is computed by the
Riemann solver at the interface i — § at time 1. The decision
is made to assign a velocity to the adjacent cell boundary
i+ 1, so that at time r+ 4t the shock coincides with the
interface i+ 3. Another possibility would be to have the
interface i — 4 move with the shock. The decision is made
depending on which interface would be required to move a
shorter distance in Lagrangian space. The shock speeds are
assumed constant over the time interval 4t. It is obvious
that the local expansion waves can be tracked in the same
way. This was not implemented in the present scheme,
simply to reduce the complexity of the programming,.

It is evident from this example that a relation between the
velocities in real space and the velocities in Lagrangian
space is needed to update the Lagrangian grid. Consider the
motion of a cell boundary given by the trajectory x = x,(¢).
This boundary is moving with a velocity u, = x,(¢), which,
in general, is different from that of the fluid u. This motion
corresponds to a motion in £-space given by the trajectory
& = £,(1) with velocity v, = &,(1). The relation between the
two velocities is found with the use of the flow map

x=X(, 1), (29)

time
shocky /

+At

L 4

i-1n i+172 &

ithcell

FIG. 4. The appropriate velocity is assigned to the cell interface i + §
in order to intercept the shock at the subsequent discrete time level.
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which is essentially Eq. (11) written kere for one-dimen-
sional flow. The cell boundary motion is given by

xp(1)=X(&u(2), 1) (30)
and, hence,
0 , d
() +60(3) (31a)
or
Upy=U+ Ty (2—2’) . (31b)

The derivative of the flow map is numerically approximated
and assumed constant in each cell, i.e.,

(),-

The velocities of the various waves, which are computed by
the Riemann problems, can be translated into velocities in
&-space by using Eq. (31b). The Lagrangian position of
each interface is updated by

Xjv12—Xj 12

(32)

Eivtz— 5,—1/2

1
T2 =& 1142+ AUVL) 4102

(33)

The solution to the Riemann problem at each interface
provides sufficient information for the adaptive strategy.
Using the exact Riemann solver at every interface is very
costly. To reduce the cost, various criteria were found to
identify the cell interfaces where a strong discontinuous
wave is suspected to be present, before solving the Riemann
problem. These interfaces are flagged as critical interfaces.
The ratio 4&~/4¢™* has proven useful in detecting develop-
ing shocks in the flow. Where the flow is smooth, without
steep gradients, the above ratio is

4
A&+

(34)

The regions, where this ratio deviates from unity by more
than 10 %, are considered critical regions. The full nonlinear
Riemann solver is used only in these regions. Everywhere
else the simple acoustic approximation to the Riemann
problem solution is used. It was found in all the numerical
experiments performed that, in addition to the above
criterion, finding local extrema of the slopes in pressure,
density, and velocity was very useful in determining these
regions. Other criteria may also be used. It is important that
the criteria be conservative enough, so that no critical
regions are missed, but they are not crucial in detecting
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discontinuous waves. The detection of important discon-
tinuous waves is ultimately done by examining the solutions
to the local Riemann problems.

No more than two adjacent critical interfaces are allowed
at any given time. In the smooth compression regions, the
interfaces at the maxima of the pressure gradients are
considered critical. The pressure gradients are estimated
using simple finite differences. If the Riemann solver at these
locations computes sufficiently strong discontinuous waves,
then they are tracked. The critical interfaces, which carry
these waves, are treated the same way at the next time level
along with other possible critical interfaces that may be
detected. When there are two adjacent critical interfaces, the
two Riemann problems are solved simultaneously. At this
point it is decided if collisions will occur within the timestep
4r. There are six waves resulting from the two Riemann
problems and there are four cell interfaces available to do
the tracking. The strongest waves are tracked and the others
are ignored. This procedure has proven to be very robust in
handling all possible wave interactions.

Collisions and reflections from walls can be treated in a
straightforward way using this adaptive grid. A typical colli-
sion case is shown in Fig. 5. At time 7, two strong shock
waves at the interfaces i — § and i+ §, are moving at each
other with speeds that allow for a collision before time
t+ A41. The Riemann problems at the interfaces i — } and
i+ are solved at time 1, simultaneously. The solution
indicates that there will be a collision within the time inter-
val At. The time step is adjusted locally, i.e., only for the
three cells i — 1, and i+ 1, so that at the intermediate time
instant the collision point coincides with the cell boundary
i+ 4. The Riemann solver at this interface, at the inter-
mediate time instant, will compute the two shock waves
emerging from the collision and the adjacent cell boundaries

T time

1+ 2A1

\i- 1/2 i+1/2 /i+3/2

t+AtL

L2

i-312 i-172 i+1/2 i43/2
FIG. 5. The typical collision of two shocks is shown. The time step is
adjusted locally so that the collision point coincides with the cell interface

i+ } at the intermediate time step.
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will be able to track them in the same way at subsequent
times. The fluxes at the interfaces i~ 3 and i+ 3 are held
constant for the whole timestep 4¢. This leads to a robust
way of handling wave interactions, without loss of accuracy.

3. RIEMANN SOLVER

The Riemann solver is an important ingredient of the
numerical scheme. It provides the means for computing the
velocity and the pressure at the cell interfaces and, thus, the
various flux terms required. It also gives valuable informa-
tion about the local waves emanating from each cell inter-
face. As explained in the previous section, the Lagrangian
grid adapts in such a way that important discontinuous
waves and collision points coincide with cell boundaries at
each time instant. It is, therefore, necessary to be able to
identify the wavcs emanating from these critical cell bound-
aries at subsequent times. This is what the Riemann solver
accomplishes. A variety of exact and approximate Riemann
solvers have appeared in the literature in recent years. In all
these solvers the focus is on computing the velocity and
pressure of the contact discontinuity, which appears after
the breakup of the initial discontinuity of the Riemann
problem. In the present scheme it is crucial to identify the
exact wave pattern as well. This information is used to
assign the appropriate velocities to adjacent cell boundaries
so that all important waves are tracked and to adjust the
time step locally so that collisions are computed accurately.
Moreover, the fluxes at an interface need to be computed
along the ray &(1) =v,; see Eq. (31b). Most interfaces are
Lagrangian and hei.ce, v, =0.

3.1. Non-reacting Perfect Gas

Consider the case of the Riemann problem for inviscid
flow of a perfect gas without chemical reactions. The initial
condition at time t=0 consists of two constant states
denoted by the subscripts r and /. Note that it is possible to
have two different perfect gases on either side of the £ =0
location, as indicated by the different specific heat ratios,
ie, 7, and y,; see Fig. 6. The space variable ¢ is the

PP Uy
pf'pf'uf '-Y’

v

FIG. 6. Initial condition for the Riemann problem. The variable ¢ is
the Lagrangian space coordinate.
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Lagrangian space coordinate. At time r=0" the general
wave pattern shown in Fig. 7 will develop.

There is a wave moving to the right (positive £) denoted
by R, a wave moving to the left (negative £) denoted by L,
and a contact discontinuity C which remains at ¢ = 0 for all
time, i.e., moves with the local fluid velocity. The waves R
and L are either shocks or expansion waves, depending on
the initial condition. Across the contact discontituity C the
pressure p, and velocity u, are continuous, but the density
has a jump discontinuity at £ =0 for all time. The density is
ppfor £ <0 and p, for £>0. It is known that the solution
to this initial value problem exists and is unique for
arbitrary initial conditions. Moreover, the solution is self-
similar and the shock waves propagate with a constant
velocity and strength. That is why they are represented by
straight lines in the (&, 1) diagram.

There are four wave patterns possibie for this >roblem.
The solution will be found for each of these wave patterns
for the special case of a perfect gas.

(i) L-shock, R-shock. Across the shock R the following
relationship holds:

u;—u, 2 1 )
=L - (M, ——).
ettt (M 33)
M., is the shock Mach number defined by
U —
M= (36)
a,

where U, is the shock velocity and a,= /'y, p,/p_, is the
speed of sound in the undisturbed region . Similarly for the
shock L,

(37)

Y

§

FIG. 7. General wave pattern resulting from the breakup of the
original discontinuity of the Riemann problem. C is a contact discon-
tinuity. L and R can be either shocks or expansion waves.
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where M, is the shock Mach number for L. Equations (35)
and 137) can be solved for the shock Mach numbers to give

y,+1 AN,
=T r 38
M, 4r+(4)r+l, (38)
Nt lu—u
M=t
2 N2
+\/(7—’+1) (—“’ "f) +1 (39)
4 a,

The pressure ratios across the two shocks are given by the
equations

Pr_yy 2 (p2y, (40)
pr y,+1
Broyp 2 M3y, (a1)
14 7, +1

From Egs. (38)-(41) one obtains a single equation for the
unknown r,

+1 T+
Gry=1-Liyy T p2yy, (—'
Pr 4 4

1 fu—2, a, \
_&y,u(z;__,)
P, 4 a; a,

P U —u, 4a,
__fy,('___,>
pl a; a,

2 _ 2
x\/(v—'+l> (“—’ “'-‘ir) +1=0.  (42)
4 a, a,

This equaticn is solved numerically using a Newton-
Raphson method. Once r is obtained, all other quantities of
interest follow from Eqs. (35)-(41). The densities are deter-
mined by

r,l (43)

=t i i=

_e/_i_ ()’i"’l)Mf
p. 2+ (},i_l)M?’

It is important to be able to determine if this wave pattern
will develop for a given initial condition. For this solution to
be possible, certain compatibility conditions musi hold.
These are easily found by noticing that in Eqs. (35)and (37)
the shock Mach numbers M, and M, must be greater
than 1. It then follows that the following compatibility
condition

u U <u (4+)
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must hold or, equivalently,

ur_ulsos

(45)

(11) L-expansion wave, R-shock. In this case, Eqgs. (35),
{36), (38), and (40), derived previously, still hold for the
shock wave R. In addition to these equations, the following
cquation gives the pressure ratio across the isentropic
€ApaANNION wave

P, 4 7= | u, -u, ety M)
- l*.—.’_—_
P: ‘ - a,

: B 2yt - 1)
v.~ Ve, ~u, v,—1la
(l . t t /l ") . (‘6)
. 2 a, 2 a

where ¢ 1w defined in Eq (35) Combining Eqs. (38), (40),
and i46) a ungk equation in r 1s obtained, as in the
previous case,

?.;' . ; .."‘:‘
Firy=1 » 7. _i-—'- LR SV 4 \(L——‘——) r'+ 1

A '.A__.. ',',;“la, Byt - §1
g t %) =0,

P. s & b N

(47)

which i wived numerncally The denuter are determined
by Fq 143 acroms the hock and by the rnentrope relation

’;l"!'c'-_l e
¢ ar)

Acroxs the stpanton wave

The compatibehty crahtronm are found by soteng that
wrone the etpanvon wave [ 0< 2. p <1 snd sctom the
hoek B 72 2 >1 Ueong Fage (8D and (46) the following
refations are found. after wme slgetra

P 7 <
. 1&8)
&
" '(“.. 7_7'%:
and
.- » -9 , 1 e
,._.‘Sp< A‘ )_
s ' -~ -t'e.
ﬂgv

1) [ ook R v owre Thie case = evacyly the
same ax cawe (n) with the trrawsformatuw -
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(iv) L-expansion wave, R-expansion wave. In this case,
there are two expansion waves and the pressure ratios
across them are given by

Pr_ (1 +7’/; 1 u/—uf)bz/m- n,

P a;

Pr y,— lu,—u 23,1y, — 1) (50)
._»’.=(l+_’__£__’) .

P 2 a,

From Egs. (50) the following single equation in r is
obtained,

—_ 2y /(3. — 1)
S(r)= (I + Lz—l— r)

—lu,—u -1 2ty = 1)
_ﬂl(l_._yl w—u, _v—la -0,
2 a, 2 a

r

(51)

which is solved numerically with the Newton-Raphson
method. The compatibility conditions are once again found
by noting that across the expansion waves 0 < p,/p, <1 and
0< p,/p, <1, which, using Egs. (50), give

0<u,—u,<2(—a'—+ il ) (52)
Yr—l ‘yl—l
and
-= <r<0,
Ie (53)
u,~u, u—u, ( 2 )a,
£r< + —.
a, a, vi—1/a,

12 Acoustic Approximation

The solution to the Riemann problem becomes easier to
obtam when the initial conditions are such that the waves R
and L shown in Fig. 7 arc so weak that linear acoustic
theory can be used This happens when the distance, in
some sense, between the two constant states 7 and / is small.
The waver R and L can then be treated as acoustic waves
wyth the pressure ratwos across them given by the simpie

pe=p.d 5 po (M- {54a)
Pr=P— TiPp M, —uy) (54b)
Comdiwng Eqs (S4e1 and (54b). one finds
w=lp-—p s 5.pp.w
4 - 7”’0:"‘,‘\ 7-Pr"v‘ \,f"’TIPIpI) (55‘
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The densities behind these waves are given by

Pa=pi(p,+uip)(p,+ulp) (56)

where

pi= =D+, i=rl (57)

3.3. Reacting Mixture of Calorically Perfect Gases

So far, the classical Riemann problem for non-reacting
inviscid flow has been considered. The solution to this
problem, as mentioned before, is a self-similar solution, i.c.,
depending on x/t only. For the case of a simple reacting
mixture the nonlinear system of equations, that needs to be
solved, is of the form

aUu oF(U)
3 T ox =G(U), (58)
where
p pu
pu pul+p
[ = , F(U)= 59
U ple+1u?) (v) pule + 3 u?)+ pu 9)
pz pzu
and
0
0
G(U)= 0 (60)
—pi

This is written using the Eulerian formulation, but one
obtains a system of exactly the same form, if the Lagrangian
formulation is used. The Riemann problem solution,

At

expansion
wave

shock

P
v

FIG. 8. This is a typical wave pattern resulting from the breakup of
the initial discontinuity of the Riemann probiem for the case of a simpie
reacting mixture. The solution is no longer self-similar.
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descnbed o faf o kot U Bob toachitg cast 8 il 1= U
For the reacting casc pumpe wh the canantitt atio of unbuaisl
gas - are allownd only sctoss cabitat dicontinuies b
not across shocks The sadution to this ;mm: 2 Bunt
complicated and no loaget sl sndda: in t g 2 tvpucal
wave pattern n shown The shack and capahacon waver ai
curved 1n the (2, 11 planc sc  they are samiorating The
solution to this genctalized Romann problem ha: hoes
worked out by Matanis Bon Artz: [ 1] 1 s shown that the
solution approaches the solubions of it classual Riemans
problem for the non-reacting caw e the bt [« U and
1 = 0. The more complhcated gractalund Riemanti solver
given by Ben-Artay provides hughet otdet accutacy ovet th
usual non-reacting solver Numcrical cxprrments were pet
formed using the present adaptive Lagrangan schome with
both Riemann solvers [t was found that the ampler aolver
gave results which were just as pood The scorieration of the
various waves was captured numencally quite accurstehy

4. NUMERICAL RESU. T

A number of test cases were sun umng thin numerical
scheme. The cases were chosen pnmaniy to vahdatc the
code and to demonstrate its potential for sedving 1D
problems with complicated wave interactions The scheme
is particularly useful for computing unsteady reacting flows
involving detonation waves and their interactions

4.1. Sod’s Shock-Tube Problem

The first case is the classical shock-tube problermn I
is an important validation run for the code The mtial
conditions used are those proposed by Sod [13] At ume
t =0 a diaphragm at the location x = 0.5 separates the two
constant states

xr<05
x>0.5,

=10, p,=10,
p,=0.125,

u,= 00,

(61)
u,=0.0,

p,=0.1,

for a perfect gas with y = 1.40. N = 150 computational cells
are used in this calculation. In all the results presented.
the solutions are given as functions of the Eulerian
space variable x, even though the calculation is done in
Lagrangian space. The Lagrangian aspect of the scheme is
evident by the increased density of computational points in
compression regions. The comparison between the numeri-
cal solution and the exact solution shown in Fig. 9 is
excellent. Note that the expansion wave is computed with
the accuracy of typical shock-capturing schemes, since no
effort is made to track expansion waves. The shock wave
and the contact discontinuity are computed with no
smearing.




COMPLTING iD REACTING AND NON-REACTING FLOWS

I —

FIG. 9 (2) Velooty profle ot tewe t =00 for Sod's shock tebe
problem with ¥ = 150 computenonel cells (D) Pressure profile at tme
t =020 for Sod's shokk tudh probiem wwth N « | 50 compeiationsl cefls
(¢} Denuty prokie st e /1 =020 for Snd’s thock tebe problem wth
N = 1350 computational cefis The sold hues represent the exact solwtions
and the bozes represent the numercal soletrons
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In order to demonstrate the ability of the scheme to com-
pute complicated wave interactions accurately, the shock
tube problem is carried a step further. Reflecting walls are
assumed present at the locations x =0 and x = L. The com-
putation is continued to see how the multiple reflections of
the shock from the walls and its collisions with the contact
discontinuity are calculated. In Fig. 10, the solution is
shown after the first reflection of the shock wave from the
wall at x=1, which occurs at r=0.285. In Fig. 11, the
reflected shock has collided with the contact discontinuity
and a new shock wave has been generated. The solution at
a later time is shown in Figs. 12. The computation was
carried out until time 1= 7.88. That corresponds to many
reflections of the original shock. In a real experiment viscous
effects would have made the process die down much sooner.
In Fig. 13, the entropy of the system is shown as a function
of ime. The entropy is defined by

s=In(p/p?). (62)
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FIG. 18. (8) Pressure profile at time 7= 0.40. (b) Density profile at
tirne 1 = 040. The shock has reflected from the wall at x = 1.
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1.2

pressure p

LY

density p

x

FIG. 11. (a) Pressure profile at time ¢ =045. (b) Density profile at
time r=045. The reflected shock has collided with the contact discon-
tinuity. A secondary shock has been generated.

As 1 — a0, the system approaches the state predicted by
thermodynamics, since the scheme is fully conservative. Any
scheme which conserves total mass and energy will give the
correct final entropy. In this case it is s=0.1168 in the
appropriate dimensionless units. This is an important point
worth repeating here. The conservative character of the
scheme is not compromised by the use of the adaptive grid
technique.

4.2. Strong Shock Wave Problem

The strong shock wave problem used by Woodward and
Colella [18] is computed with the present scheme. This
problem is a good test case because of the strong interacting
discontinuous waves. The initial condition is that of a gas
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FIG. 13. Entropy s=In(p/p") of the symem as a function of time for
the shock tube problem with multiple reflections.
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FIG. M ta) Velocwy profie sad (D) densty profile at time ¢ = 0.030
e the strong shock weve problem

with specific heat ratio 7 = 1.4 at rest in the tube 0K x < 1.
The inttial density s p = | and the pressure is

p=1000, x<O01,
p=001, 01<x<09, (63)
p=100, O09<x<l.

The results are shown in Figs 14 and 15 for the times
r=003 and 1=0038, respectively: 800 computational
cells were used for this calculation.
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FIG. 18, (a) Velocity profile and (b) density prifile at time ¢ = 0.038 for
the strong shock wave problem.

4.3. ZND Detonation Waves

Another test case is that of a steady detonation wave.
The well-known ZND theory (Zel'dovich-VonNeumann-
Doering) for a steady detonation is used to compare with
the numerical solution obtained using this scheme. As a first
check, the profile of a steady detonation wave, computed
using the ZND theory, is given as the initial condition to the
unsteady code. The solution after time ¢ = 10 (10,000 time
steps) is then superimposed on the ZND solution and
compared. The comparison, shown in Fig. 16, is excellent.
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The standard Arrhenius law, given by Eq. (ia), is used for
the chemical reaction rate with =0, i.e.,

2= —KzT*exp(—E/R,T).
The parameters used for this test run are
y=12, qo/R;,To=50, E/R,To=40,
where the subscript zero denotes the undisturbed region
into which the detonation propagates. This steady detona-
tion wave corresponds to an overdrive factor of f = 1.6. The
overdrive factor is defined by

f=Dz/Déjr

where D is the detonation wave speed and Dy, is the detona-

tion speed corresponding to the Chapman Jouguet pont
For details on the ZND theory see the book by Fuckett and
Davis [4).

The case of unsicady detonation waves will now be oon-
sidered. For the following cases the ssmplified Arrhenius
chemical rate law is wed (Eq. (1d)). ie.

t= —K:H(T- T,

where T _ is a critical temperature above which the chemcal
reaction begins. Figure 17 shows the evolstion of s»
unsteady detonation propagating i an sndisturbed region
It is the well-known piston problem The motion of the
piston, starting at x =0, generates 8 shock which raises
the temperature of the gas above the critical value T,
The chemical reaction begins and the detonstion wawe
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very well by this scheme. N = 200 computational celis were
used. The numerical values used in this run are

y=14, ¢,=20,T.=12, K=1,

where all quantities are normalized appropriately. The
normalization is such that the initial temperature of the gas
at rest is To= 1 or, equivalently, po= p, in dimensionless
units. The initial pressure distribution is given by

Po(x) =0.10 + 3.0 exp( —25x7).

5. CONCLUSIONS

An adaptive numerical scheme has been presented for
the computation of flows with complicated interactions of
discontinuous waves. Its accuracy and robustness, as
demonstrated by numerical experiments make it a valuable
tool, especially for the study of unsteady reacting flows with
detonation waves. The conservative formulation gives the
method all the advantages of higher-order shock-capturing
schemes and its adaptive characteristic allows for good
accuracy near shocks with no smearing effect. The advan-
tages of the conservative shock-capturing schemes are com-
bined with the advantages of the front-tracking methods
very well to give a useful computational scheme.

The drawback is that the extension of this scheme to
multidimensional flows is not straightforward. The main
idea of the scheme is the conservative front-tracking of
shocks and contact discontinuities on a Lagrangian grid.
The Lagrangian aspect of the method is the most difficult

LAPPAS, LEONARD, AND DIMOTAKIS

to extend. The conservative front-tracking aspect can be
extended and work in this area is in progress.
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Abstract

This paper focuses on the correlation of two successive scalar images for the
purpose of measuring imaged fluid motions. A method is presented for deforming,
or transforming, one image to another. Taylor series expansions of the Lagrangian
displacement field are used, in conjunction with an integral form of the equations
of motion, to approximate this transformation. The proposed method locally corre-
lates images for displacements, rotations, deformations, and higher order displace-
ment gradient fields, and applies a global minimization procedure to insure a global
consistency in the results. An integral form of the equations of motion is employed
and, as a consequence, no spatial or temporal differentiation of the image data is
required in estimating the displacement field. Successive two-dimensional digital
CCD images of fluid motion marked with dye, are used to verify the capabilities of
the method. The utility of the method is also illustrated using a pair of Voyager 2
images of Jupiter.
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1. Introduction

The application of photographic, CCD, and other forms of imaging for the
purpose of estimating flow velocities, has been investigated by many researchers in
fields ranging from fluid mechanics to vision research. In the most common methods
for measuring fluid flow velocities, the flow is seeded with particles, or markers, that
can be easily imaged and tracked. An extensive review of methods using particle
and speckle images for fluid flow measurement is presented by Adrian (1991). The
estimation of the motion and deformation of solids is closely related to that of fluids.
A method of determining displacements and stress intensity factors in solids, using
white light speckle images and image correlation techniques, is presented in McNeill
et al. 1987. In the absence of particles, flows have also been tagged with a line
or grid, e.g., using laser-induced photochemical reactions (Falco & Chu 1987), or
laser-induced fluorescence (Miles et al. 1989). When this is not possible, one can
use markers that occur naturally in the flow, e.g., Bindschadler and Scambos (1991)
have correlated the translation of distinct surface features in ice flows to determine
flow velocities.

Determining motion from successive images is also of interest in animation, as
well as the study of biological and robotic vision. Most investigations along these
lines have taken the form of extracting the motion of objects in an image and, as a
consequence, they focus on the motion of rigid objects and their representations. See
Hildreth & Koch (1987) for a review and Murray & Buxton (1990). This approach
is somewhat different from the interests of Fluid Mechanics where the object of
interesi is a fluid, highly deformable and often compressible. Nevertheless, many
results from object motion research apply directly to the motion of fluids and solids.

The proposed Image Correlation Velocimetry (ICV) method that will be de-
veloped in the present discussion has roots in both the correlation methods used
in measuring fluid flow and the deformation of solids, outlined in Sec.1.1, and the
gradient methods used in measuring optical flows, outlined in Sec.1.2.

1.1 Correlation methods

Several techniques for determining fluid flow velocities from particle image pairs
(e.g., Willert & Gharib 1991) employ an optimization that relies on some form of a
cross-correlation function, e.g.,

max [ Eo(x) Er(6) o, (1)

with
£ =x+a, (2)
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where a is a vector parameter to be determined by the optimization procedure and
A is the correlation region. The distribution of the image irradiance, E(x,t), is
known at times ¢y and t,, i.e.,

E¢(x) = E(x,t3) and E)(x) = E(x,t;) . (3)
The average velocity, u, , within the correlation region is then approximated by,
a
u, = e (4)

The drawback of this method, having only two parameters to quantify the motion,
is that it cannot resolve displacements properly where there are large displacement
gradients within the correlation region. Anticipating this problem, and being very
interested in displacement gradients, researchers in Solid Mechanics, apply tech-
niques which include higher order deformations of the displacement field within a
correlation volume. For example, McNeill et al. (1987) describe a method whereby
a model of the image displacement field (mapping) is used in a least squares opti-
mization procedure, t.e.,

a,Va

min /A [Bo(x) — Ev (&) d?x . (5)

The affine mapping,
£ = x+a+(Va)-dx , (6)

is used as an example of such a function, and the displacement a and the four
components of Va are treated as parameters to be determined by the optimization
procedure. However, any physically motivated mapping can be used in place of

Eq. 6.

In both these methods, the image data are integrated over a region and require
no spatial differentiation. Since, for two-dimensional images, only a few parameters
are extracted from the optimization, these methods are relatively immune to noise
and lend themselves to fast solutions.

1.2 Gradient methods

A method for determining the velocities of visual features in an image was
presented by Horn & Schunck (1981). This visual velocity is termed “optical flow”
to differentiate it from the velocities of (material) objects in an image, e.g., a shadow
moving across the ground has a perceived velocity that is markedly different from
that of the ground, and a rotating featureless disk will have no visual velocity at
all. The fundamental equation used by Horn & Schunch to determine the optical
flow was,

E-’-U'VE:O, (7)
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where E is the image irradiance (a scalar) and u is the optical flow velocity. The
differential terms, 0E /8t and VE, can be estimated from the image data and the
component of u along VE is calculated using Eq. 7. Methods employing equations
of this type are called gradient schemes. Note that no velocity can be calculated
using Eq.7 if there are no features or gradients in the image, i.e., if VE = 0.
In addition, because Eq. 7 employs only the component of u along VE, velocity
components along the equi-scalar contours of E cannot be determined using Eq. 7
alone. This limitation was designated the “aperture problem” by Wallach (1976).
The terminology is somewhat misleading and is only used here in reference to the
convention. More appropriate names might be the “characteristic problem,” or the
“direction problem,” because the problem is finding the velocity along the charac-
teristic direction, E = constant. Gradient schemes also have the problem that finite
difference approximations of the spatial and temporal derivatives are necessary. A
problem with such approximations for tlLe derivatives is related to the Nyquist sam-
pling criterion, where aliasing in the image data can effect the velocity estimates.
To minimize this problem in taking the gradient, the motion between images should
be less than half the smallest local spatial scale, Ag, of the E—field, i.e.,

u| (¢ —~t 1

(cf. Eq.7), where (t; — tg) is the time between images.

The uncertainty of the so-called aperture problem can be solved in some cases
by applying constraints to the motion, e.g., the motion is of a rigid body (see
Murray & Buxton 1990, for example), or a limited class of deformable bodies (see
Terzopoulos & Metaxas 1991).

Horn & Schunck (1981) applied a global constraint to Eq. 7 (in two dimensions),
by solving for u(x,t) using an optimization, i.e.,

. OF 2 2 2
Jg:’rtx)/A([at+u-VE] +ka)dx, (9)

where o represents the constraint cost function in the optimization process, and
k balances the relative cost of ¢ and Eq.7. In particular, Horn & Schunck chose
smoothness as a constraint, i.e.,

= T (5 )2 (10)
=12 oz;

The idea of including constraints in the optimization process that determines the

velocity field, over an area, is important in the context of the method to be discussed

below. Note that the constraint in Eq. 9 need not be included in the optimization

integral. Instead, it could be included as a feature of the optimization technique.

See Murray & Buxton (1990).
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2. Proposed methodology

A succession of images can represent anything fratn Lhe tholion of cars on a
highway to the transport of a dye marker in water. We take the view Lthat piven
successive image representations, there exists a transformation, of mapping. of the
local image intensity data that takes one image Lo the next In many cases, while
the equation of motion of the imaged field may be known, the mapping taking one
image to another may not be. Successive images combined with the aquations of
motion, however, often allow us to approximate the mapping.

The mapping of one image to the next can be developed by considering the
Lagrangian displacement field §(x.t) of the image sequence. Specifically, if x is
the coordinate of a point on an image at some initial time t5, £(x,!{) represents
the coordinate of this point in a subsequent image recorded at a later time t. If we
imagine the image sequence as the result of a continuous recording process, we can
assign a Lagrangian image-flow velocity field, referred to as “optical flow™ in the
discussion and literature cited above, i.e.,

ulé(x,t),t] = %t(x,t) , (11)

to the continuous displacement field &(x,t) that takes an initial point x in the
image recorded at time ¢y, to the point £(x,t) on the image recorded at time t.
We recognize that, for the case where the images represent fluid flow, e.g., successive
images of a convected scalar, the image-flow velocity field, u(x,t), may be quite
different from the fluid-flow velocity field us(x,t). The extent to which the former
represents a good approximation for the latter is a separate issue that can only be
addressed in the context of the details of the particular imaging process and the
fluid-flow field.

In the proposed implementation, local series approximations for the displace-
ment mapping are used in conjunction with an integral form of the equations of
motion. A global nonlinear correlation (optimization) process is employed to esti-
mate the image-flow velocity, vorticity, deformation rate, etc., of the imaged data
field. “Series,” in this discussion, will denote “Taylor series.”

In the context of fluid mechanics measurements, we will focus on images of
continuous, passive, convected scalars, e.g., dye markers, carried by a fluid. As will
be illustrated using a pair of Voyager 2 images of Jupiter (Sec.5), however, any
marker in the flow can be used.

The method will be developed for three dimensions and can yield three-
dimensional velocity fields. The method can also obtain two-dimensional velocity
fields from images of two-dimensional flows. In a concession to the limitations of
typical data acquisition systems today, however, the method will be applied here




5

to a two-dimensional flow and also to two-dimensional slices of three-dimensional
flows. We note that in some cases, two-dimensional imaging devices can be used to
obtain approximations to three-dimensional image data, e.g., Dahm, et al. 1991. A
short discussion of the implications of correlating two-dimensional slices of three-
dimensional data is presented in Sec. 4.

2.1 Fluid displacement and equations of motion.

To see how the image-flow velocity field can be calculated from three-
dimensional image data sets, spaced in time, first consider a Lagrangian description
of » Row being imaged. Figure 1 illustrates the motion of fluid particles within a
volume, V. Fluid elements at x, in a neighborhood V, at time ¢y, are convected to
locations £(x.t) at a later time ¢. The displacement field, £(x,t), can be thought
of as a transformation of the field x, at time o, to £(x,t). Given the image
displacement field €(x.t). the image-flow velocity field is then given by Eq. 11.

§(x;t3)

E(x:t,)

E(x;ty) =x

F1G.1 Motion of a fluid volume.

Using this Lagrangian field, £(x,t), one could, in principle, integrate the equa-
tion of motion of the imaged scalar, i.e.,

-g—:z-}-u-Vc = DVi, (12)

to obtain

al€xt)] - além ] -0 [ Viclgxndr =0, (13)
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where
co(x) = c(x,t0) and e (x)=c(x,t) (14)

represent the c(x, t)-field at times ¢y and ¢, , respectively, and D is the appropriate
diffusion coefficient. '

In the first two examples, the motion of food coloring in glycerine (Sec. 3) and
dilute fluorescein in water (Sec.4), are examined. In these flows, the diffusion of
the dye markers, in the time interval between successive images, is relatively small
and may be neglected, i.e.,

(t1—t) D

A — <1, (15)

where, t; — tg = 0.1 8 is the time between images, £ = 50 to 80 um is the imaging
resolution, and the diffusion coefficients are no larger than D = 10~°m?/s. In
addition, we note that the Schmidt number is large in both flows, i.e.,

S. = v/D>10° , (16)

where v is the kinematic viscosity. In the first example of the dye marker in glyc-
erine, the fluid flow is two-dimensional, as is the image, and the image-flow velocity
field, u(x,t), is a good representation of the fluid-flow velocity field, uf(x,t). In
the second example, both the flow velocity and the imaged scalar field are three-
dimensional, while the image is two-dimensional. As we will discuss, the image-flow
field need not necessarily represent the flow velocity field, in that case. In the third
example, the motion of the imaged quantity in the Jovian atmosphere (Sec.5) does
not follow any simple equation of motion. In that example, the derived image-flow

velocity field can be expected to be an even poorer representation of the fluid-flow
velocity field.

In cases where the diffusion of the imaged scalar can be ignored, Eq. 13 becomes

c1[&(x,t1)] — co[€(x,t0)] = 0. (17

Equation 17 represents a significant simplification over Eq. 12, its differential coun-
terpart. It contains no spatial, or temporal, derivatives and suffers few of the
drawbacks associated with the gradient methods discussed earlier (Sec.1.2).

Using the integral equation of motion (Eq. 17) in place of the differential equa-
tion of motion (Eq. 7) in the optimization (Eq.9), and generalizing the optimization
to three dimensions then yields an expression for determining £(x,to) and £(x,¢,),
i.e.,

min
E(*v‘@’ ’ E(xvtl)

/V ({cx [&(x,1)] = co[€(x, 0)] }2 + ka’) dx. (18)
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In the spirit of the correlation methods discussed in Sec.1.1, where the type
of motion within the correlation volume is limited to translation alone, the present
method restricts €(x,tp) and €(x,¢;) to the first few terms of a series approximation
for £(x,t). While many representations of the displacement field could be employed,
a (Taylor) series representation is used because the first two orders in the series
expansion correspond to physical fluid mechanical quantities, i.e., the velocity vector
and the velocity gradient tensor. More importantly, the series approximation has
the additional benefit of enforcing smoothness in the displacement and displacement
gradient fields within a correlation volume.

2.2 Displacement field and kinematic quantities

In the case of fluid-flow images, the quantity &(x,t) is a complicated nonlinear
function of the imaging process, the nonlinear convection dynamics, and x. Local
estimates of this function can be made by Taylor series, expanding £€(x,t) in space,
at some time ¢, in an image correlation volume, V. This yields,

£06,1) = E0xit) + (x ~ %) - VE(xeit) + 3 [(x—x)- VP €t +... (19)

In this expression, x. denotes the center of the image correlation volume, V, at
time tp, and V§(x.;t) denotes the gradient of &(x,t) with respect to x, evaluated
at x.. Figure 2 plots the number of parameters used in the optimization process as
a function of the order used in the series expansion, for two and three dimensions.
Figure 3 illustrates the effect of the various orders of the expansion en a two-
dimensional square “volume.”

Using a finite difference approximation in time for the velocity, Eq. 11, and the
series representation, Eq. 19, evaluated at times t; and t;, yields an estimate for
the velocity within the correlation volume, i.e.,

£(x; t1) — &(x; to)

ty — ¢t

ufé(x;t),t] =~ (20)

where to <t < t;. Similarly, taking the spatial gradient of Eq. 20 yields an expres-
sion for the velocity gradient tensor within the correlation volume, i.e.,

VE(x;t1) — VE(x; o)
ty — ¢ ’

Vulé(x;t),t] = ;;u[f(x;t),t] o~ (21)

Vorticity, divergence, and strain rate can then be obtained from the components of
the estimated velocity gradient tensor, Eq. 21.
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FIG.2 This plot shows the rapid increase in the number of parameters used in the
optimization procedure with increasing order of the series expansion. “+” is
for a 2-D expansion and“o” for 3-D.

There is some freedom in choosing the coordinate transformation at the initial
time t9, £(x,t0). Our choice is to have the coordinate description at the initial time
to correspond with the local Eulerian coordinates at that time, i.e.,

€(x, %) =x . (22)
In terms of the series expansion, Eq. 19, this means that
Vé(xcite) =1, (23)

where I is the identity tensor, and all other higher order derivative terms are iden-
tically zero.




Translation (no deformation)

Linear deformation

/
[ ] ]
Quadratic deformation ] i

Cubic deformation

Combined translation and deformation A ﬁ;(
~

Fi1G.3 The effect if translation and various orders of deformation on a two-
dimensional square “volume.” See Sec.2.2.
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3.3 Seeking a global solution

A solution for the coefficients of the series expansion, i.e., §(x;t), VE&(x.;t),
etc., can be obtained in a neighborhood around x. using the expansions for
€(x,t) and £(x,t) from Sec.2.2. The unknown coefficients of the series ex-
pansion, §(x;t), V€(x.;t), etc., are treated as parameters in an optimiza-
tion process. To minimize the difference between two data sets (images), in
a least squares sense, for a single correlation volume, we use the optimization,
Eq. 18, in conjunction with the series approximations developed in Sec.2.2, i.e.,

min /v ({Cx[f(xc:h)'i'(x—xc)-Vf(xc;tl).‘.._'] ‘Co[x] }2+

E(x.:t1). 9€(xeith)....
+ ko? ) d3x . (24)

The optimization implied in Eq. 24, combines many of the best features of corre-
lation methods and gradient methods, while eliminating many of the deficiencies.
Specifically, this optimization method has high immunity to noise, uses the equa-
tions of motion, can incorporate constraints, requires no differentiation to calculate

the displacement field, and can capture displacement gradients within a correlation
volume.

In principle, a single correlation volume covering the entire image and a series
approximation of a high enough order can be used to capture the entire image
displacement field. In practice, however, employing a series approximation beyond
the third order (cubic) term is impractical because of the rapid increase in the
number of parameters in the optimization process with increasing order (see Fig. 2),
and the associated increase in the computational time and complexity. In the
present calculations, when the quadratic term is not sufficient to capture the image
deformation over the entire flow field using a single volume, as is usually the case,
several series expansions residing in smaller, adjacent, correlation volumes are used
in place of the single large volume.

To construct a global optimization using a number of local series expansions, we
require that neighboring correlation volumes, with independent series expansions,
must yield consistent results. In the present method, we use the expansion for the
displacement field about one correlation volume to estimate those of its neighbors.
The displacement field of these neighbors is also estimated in terms of their own se-
ries expansions. The root-mean-square difference between displacements estimated
by neighboring correlation volumes is applied as a constraint cost function. Since
it is necessary to refer to a number of series expansions, it is useful to define the
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F1G.4 The k1 - k8 solid circles denote the points in V; used by the constraint cost
function ;. The empty circles denote their counterparts estimated by the
neighbors V;; - V.

taylor series for £(x,t) in a neighborhood V; centered about x,. as

Eixit) = Exit) + (X Xe.) VeGR4 37 (K= %) VP £lxeit) 4. . (25)

When series expansions about multiple points are then employed, the minimization,
Eq. 24, is modified, i.e.,

min /v ({cl[e.-(x;tl)] ~ co[x] }2+ ka?) d*x, Vi . (26)

E(xe; it )-Vf(xe‘ it1)yees

This minimization is performed within all the V;, simultaneously, and the square
of the constraint cost function,

o? = Y% |&lxuit) - €i(xust) (27)
5 &
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is applied to provide global continuity of the solution. §; denotes the series expan-
sion about the “;” neighbors of V,, and x, denotes the “k” points of comparison
between the solutions §; and §;. See Fig.4. In the present method, eight points
about each correlation volume are used for comparison, three with each of four
neighbors. These eight points are sufficient to define the series expansion coeffi-
cients of the correlation volume, up to quadratic order.

The present implementation of the method can solve Eq. 26 for two-dimensional
flow up to the cubic term in the local series expansions, but the series is usually
truncated at quadratic order. The optimization of Eq. 24 is accomplished using a
multidimensional minimization process, with image data between pixels estimated
using bilinear interpolation. See for example Press, et al. (1988).

2.4 Minimization parameters in two dimensions

Typical CCD imaging technologies today are limited to two-dimensional (spa-
tial) data. This is not a problem if the flow being imaged is also two-dimensional.
This section describes how the method is applied in two dimensions. First, we de-
velop the terms of the series expansion, Eq. 19, for two-dimensional flow. With the
two-dimensional vector

[;:] =x-X% , (28)

as the position, x, relative to the center of the correlation volume, x., the terms
of the series expansion at a time t; appear as a constant term,

Elxeit) = [2;] : (29)

where the a; are the vector coordinates of the center of the correlation volume at
the time t;, t.e.,

a; = &i(xet1) (30)
a linear term, 5
. _lory a12 . 1

(x — xc) - VE&(xc;t1) = [a;,x a;'z] [52] , (31)

where the a; ; represent the first order deformations and rotations of the image
field within the correlation volume, i.e.,

ij = —35‘59’;‘;“) : (32)
a quadratic term,
1 2 a1 a2 0122 6{
lx-x) VP = [Sn e mal gg| @

&
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where

(. 2 )azfi(xc;tl) (34)

83_,‘02&

a cubic term,

&
[(x xe) - VP &(xe;t1) = [01 A1l a1n2 01122 01.222] 6252 . (35)

az111 02112 02122 (2273 5152
&3
3

3 ) FBei(xc;t1) (36)

1
ikl = 37 (,‘ +j+k—3) 0z;0x:0z; °’

and so on for higher order terms. The a;jx and a; ;i are, respectively, related
to the second and third derivatives of the displacement field within the correlation
volume, t.e., by Egs. 34 and 36.

The velocity and velocity gradient (Egs. 20 and 21), can also be written in
terms of the parameters of Eqs. 29 and 31 and the series expansions at times t;
and t,, t.e.,

=[] [0 5] o

where _ [zc] o)
Ye

and v £) = [8:4/8.1: 8u /8y =__1___ aj1-1 a2 39

u(xe:t) = | 5102 8v/0y tl—to[ pol a,,,-l] - (39)

Alternatively, the velocity gradient can be written in terms of the in-plane vorticity
and rate-of-strain tensor, i.e.,

Vu(x,t) = [%0/2 —“3/2]+[::: i:: : (40)

where w, is the vorticity, i.e.,

_az1—ag

= 41
* t) —to (41)
and $8;z, 8y, and s,,, are the components of the rate-of-strain tensor, i.e.,
ay —1
822 = ot 10 S , (42)

t1 -t
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_az3—1
Syy = ty ~to (43)
and .
_laa + a3,
83” - 2 tl - to (44)

An interesting quantity to consider is the second invariant of the rate-of-strain
tensor (see Cantwell 1992, for example), i.e.,

-2q, = 82, +283,+42, . (45)

3. Couette flow between concentric cylinders

An apparatus to generate a Couette flow between concentric cylinders was
fabricated for the purpose of testing the method. The cylinders were made from
248 mm lengths of stock Plexiglas tubing. The inner and outer radii of the annular
region between the cylinders were nominally 25.2mm and 40.9mm. The cylinders
were from stock Plexiglas tubing, so the uncertainties in the radii were £1mm. The
outer cylinder was rotated with a rotation rate of 1.1 rad/s, with the inner cylinder
stationary. In this example, employing a dye marker in glycerine, the fluid flow is
nominally two-dimensional and the marker follows the flow. Hence, the image-flow
velocity field, u, can be accepted as a good representation of the fluid-flow velocity
ﬁeld, Ug .

Images were recorded using a Texas Instruments Multicam MC-1134GN Multi-
Mode B/W Camera. The data were stored digitally using an in-house multiple frame
grabber (12-bit A/D), designed by Dan Lang and Paul Dimotakis of GALCIT, set to
record up to 28 of the 1134 x 468 pixel gray level images from the camera, spaced
by 100 msec (adjustable between 33 and 267 msec). Because the horizontal and
vertical spacing of the pixels were not equal on this CCD, grid spacings and image
correlation volumes with a ratio of 1:1.74 (vertical:horizontal pixels) were used to
yield a uniform spacing of the data in the real image plane. Flow visualization
was performed by randomly distributing red food coloring (dye) on the surface of
the fluid. To provide backlighting for the dye marker, the fluid beneath the surface
contained a translucent white suspension of 3 um aluminum oxide ( Al O3 ) particles
in glycerine. When illuminated from the side, this provided nearly uniform white
backlighting for the dye being imaged on the surface. Because of the depth of field
of the imaging and the high density and uniform distribution of the aluminum oxide,
scattering from individual particles was not detectable in the video images.




FI1G.5 Initial placement of series expansion neighborhoods. Each square denotes a
control volume. The small circle at the center of each control volume denotes
the center. or control point. of a series expansion.

In the present investigations, only the outer cylinder was rotated. hence the
velocity field can be written as (e.g., Schlichting 1979).

e (r.f) - . up(r. #) _ rir,—r.r

S!Uru s!urli T,,,/r‘ - rl,/ r"

(16)

where ro 8w, and up are the radial and angular positions and veloaities respec.
tively, €2, is the rotation rate of the outer evhinder, and r, and v, sae the anner
and outer radi of the eyhnders: In this flow, the divergenee is zera. 10

VYV u=0. 117

ated the vorticity s nmiform. 10

adrfy = e, Cwvwr by = ——— (18
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the value of the optimization functional (arbitrary units), as a function of
the number of terms in the two-dimensional series expansion.
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4. Cylinder wake flow. Two-dimensional slices of three-dimensional data

In this section, we present the results of applying the two-dimensional cor-
relations to two-dimensional slices of a three-dimensional flow in the wake of an
impulsively started circular cylinder. Here, the cylinder is 1.75cm in diameter and
45.5cm long. It is drawn through a distribution of fluorescein dye in water at a
speed of 1.27 cm/s. The Reynolds number in this case is,

Re= %‘5 ~ 220 , (49)

where U is the cylinder speed, d is the cylinder diameter, and v is the kinematic
viscosity.

Fi1G.9 Initial placement of series expansion neighborhoods. Each square denotes a
control volume. The small circle at the center of each control volume denotes
the center, or control point, of a series expansion.
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The CCD camera and data acquisition system are the same as for the Cou-
ette flow test case (Sec.3). Laser sheet illumination is provided by a Continuum
model YG661-10 frequency-doubled YAG laser. The laser was operated at 532 nm,
300mJ, 5ns pulses width, at a rate of 10 Hz. The flow here is three-dimensional in
both the velocity field and scalar distribution.

|
:

-
t
|

P
-
b
[

FiG. 10 Displacement of grid after 100 ms, estimated using the nonlinear correlation
process.

Figures 9 - 14 demonstrate the method on images of a vortical structure forming
in the wake of the cylinder. These images were taken after the cylinder had traveled
about 8 diameters. The image at the initial time is shown in Fig. 9, and 100 ms later,
in Fig. 10. In this case, the series approximation used in the correlation process was
expanded to quadratic order. Figure 11 shows the displacement of the centers of
the correlation volumes.

The two-dimensional vorticity is displayed in Fig.12. A large vortical region
can be seen in the wake of the cylinder. The two-dimensional divergence, presented
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Fi1G. 11 Displacement of centers of grid over 100 ms.

in Fig. 13, exposes the three-dimensionality in the flow. Figure 14 plots the second
invariant of the rate-of-strain tensor. Note the region of strain (rate) that scems
to follow the periphery of the large vortical structure. This could be a region of
vorticity. from the previously shed vortical structure, that is being strained around
the current one.

As a general observation, an important issue arises when imaging a two-
dimensional (planar image) slice of a three-dimensional field of a continuous scalar.
c(x.t). as in the previous example. An out-of-plane component of the fluid-low ve-
locity, ug. coupled with an out-of-plane component of the scalar gradient. Ve(x.t).
will contribute to the in-plane image-flow velocity u. In this case, the equation for
the in-plane image flow can still be written as,

Jc N de Oc 4 dc +1 Jc 0 30)
-_— . “E ) = “+
Yok T ot gy (o

where we have assumed that the image irradiance E(x.t) is proportional to the two-
dimensional slice of the scalar concentration, ¢(x.t), and where the in-plane image-
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Long dashes denote positive values and
short dashes negative. Contours spaced by 0.5s71.

flow velocity, u = (v.v) = d€/dt (Eq. 11). is the one derived from the minimization
function. as described above.

Considering the transport of the three-dimensional iso-scalar surfaces (see
Fig. 15). we find that the two-dimensional u = (u,v) in-plane image-flow velocity
components are related to the three-dimensional uy = (ug. vg, wy) fluid-flow velocity
and the three-dimensional scalar gradient components. In particular, we have,

. v + Jc Jdc/0x
U = u ]
0T 9z (9c]or)T + (9c/0y)?
Jc Oc/0y (51
v vf + wg —

Dz (0¢]0r)? + (Dc)Oy)?

As can be seen. by substituting Eq. 51 in Eq. 50. these relations recover the three-

dimensional transport equation for a conserved scalar field e(x.t). in the case of




F1G.13 Contours of constant divergence, V -u = % + g—; As in Fig. 12. the

contours are spaced by 0.5s71.
neghgible diffusion. ...
Jdc + Jde Oc + Jc N Jdc + dc 0
— 4y — = —tuy—+vyy—+uwg— = 0.
ot T U ax T oo or T oy T Tz

These results provide us with the criteria for when the in-plane mage-flow
velocity can be regarded as a good approximation to the in-plane fluid-flow velocity.
[ particular. we will have,

[0z Jc
u o~ wup . if il > ( 9e/9 >—f- . (52a)

w (Oc/Or)2 + (Oc/Dy)? ) Or

and 9¢)0 p
Vo~ . _l_'L c/Jz _( ol
v b (0(:/ar>2+<0«-/0.u>'—’>0y' (520
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F1G. 14 Contours of constant second invariant of the rate-of-strain tensor (Eq. 45).

gy =—-13 [(%)2 + (2—;)2 -1 (% + 9v)2 ] . Contours spaced by 0.5572.

We can see that if wy is small. or if dc/dz is small. or both. by the measure in Eq. 52.
then the in-plane image-flow velocity field can be accepted as a good representation
of the in-plane fluid-flow velocity field.

Finally. since this method estimates the in-planc image-flow velocity u. and
not the fluid-flow velocity wug, its application to two-dimensional image slices of
three-dimensional scalar field data is identical to its application to two-dimensional
scalar data.
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F1G.15 Two-dimensional slices of a three-dimensional scalar field ¢(x,t). us in-
dicates the 3-D fluid-flow velocity and u is the resulting two-dimensional
in-plane image-flow velocity.

5. Voyager 2 images of Jupiter

The method is also illustrated on a pair of the images of the atmospheric dy-
namics of Jupiter taken by Voyager 2. These images were taken from the “Voyager
Time-Lapse, Cylindrical-Projection Jupiter Mosaics,” by Avis & Collins (1983).
640 x 350 pixel subimages of rotations 349 and 350 were used in the correlation
process. The subimage spans 168° to 97° longitude and 0° to —46° latitude (the
equator is at the top of the image). The subimage from rotation 349 is shown in
Fig. 16, with an overlay of the initial placement of the correlation volume neighbor-
hoods. The vertical line on the left is a reference line which is to be deformed using
the mean zonal velocities of Jupiter from Limaye (1985). Figure 17 shows the same
region, one rotation later, with the associated grid deformed by the nonlinear cor-
relation method. On the left is the reference line from Fig. 16, carried by the mean
zonal flow. The displacement of the centers of the correlation volumes is shown in
Fig. 18.
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F1G. 16 Initial placement of correlation volumes overlayed on a sub-image of ro-
tation 349 from the “Voyager Time-Lapse, Cylindrical-Projection Jupiter
Mosaics.” Each square of the grid denotes a correlation volunie. The ver-
tical line on the left is a reference line to be carried with the mean zonal
velocity of Jupiter (see Fig. 17).
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F1G. 17 Deformation of the correlation volumes (see Fig. 16), after one rotation.
The line on the left was deformed from the vertical line in Fig. 16 using the
mean zonal velocity of Jupiter.
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F1G. 18 Displacement of grid control points (centers of correlation volumes) after
one rotation. The lines on the left denote the displacement ra the mean
zonal flow of Jupiter.

6. Conclusions

Series expansions of image displacement, in conjunction with i global nonhnear
correlation method. can be used to measure fluid yvelocities, and velocity gradient <,
from pairs of contimons. convected, scalar nnages. It is shown that increasing
the order of the expansion can improve the accuracy of the results The proposed
method does not require discrete particles and may also be used in situations where
there is a natural marker already in the flow, e.q.. species concentration can be
used to measure velocities in compressible flows  The method is developed for
three-dimensional data sets and demonstrated on two-dimensional images of thid
flow.
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